• Title/Summary/Keyword: water to cement ratio

Search Result 1,103, Processing Time 0.026 seconds

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;최응규;김진근;이칠성;이상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.167-175
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix proportions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate shrmkage of mortar. The water /cement ratio used in construction field is about 64% by the investigation. Even if the water /cement ratio of mortar is reduced, floor mortar is still able to have the required workability by the appropriate use of the fine aggregate with high fineness mo'dulus and superplastizer. The equations hetween mortar flow and water /cement ratio, sand /cement ratio, fineness modulus of fine aggregate were proposed in this study. And the proposed equation may provide available mix proportions of floor mortar.

A Study on the Mix Design of Antiwashout Underwater Concrete According to Compressive Strength (압축강도에 따른 수중불분리 콘크리트의 배합설계에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.91-97
    • /
    • 2003
  • At present, the antiwashout underwater concretes are used as popular construction materials in European countries, the United States and Japan. The water-soluble polymers in the antiwashout underwater concretes provide excellent segregation or washout resistance, self-compaction and self-leveling property to the concretes. The purpose of this study is to recommend to optimum mix proportions of antiwashout underwater concretes according to compressive strength of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$. The antiwashout underwater concretes are prepared with various unit cement content, unit water content, sand-aggregate ratio, unit antiwashout agent and superplasticizer content. And they are tested for flowability, and compressive strength. From the test results, it is possible to recommend the optimum mix proportions of antiwashout underwater concretes according to compressive strengths within the range of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$.

Physico-Mechanical Properties of Cement-Bonded Boards Produced from Mixture of Corn Cob Particles and Gmelina arborea Sawdust

  • Adelusi, Emmanuel Adekanye;Olaoye, Kayode Oladayo;Adelusi, Felicia Temitope;Adedokun, Samuel Ayotunde
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.79-89
    • /
    • 2021
  • Cement bonded boards of 10 mm in thickness were produced from the mixture of Gmelina arborea sawdust and corn cob particles. The strength and dimensional stability of cement bonded composites produced from these two mixtures were examined. A total of thirty experimental boards were produced at density level of 1,000 kg/㎥ with cement to fibre ratio of 2.5:1 and 3:1 and five (5) blending proportions of G. arborea sawdust to corn cob particles of 100:0; 75:25; 50:50; 25:75 and 100:0. The effect of the cement to fibre ratio and blending proportion on the Water Absorption (WA), Thickness Swelling (TS), Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) were determined. The result indicates that as the mixing ratio of cement to fibre and blending proportion of maize cob (75%) to G. arborea (25%) increased, the thickness swelling, water absorption decreased, whereas the MOR and MOE increased. It also shows that most dimensionally stable and flexural strength boards were produced at the highest level of mixing ratios (3:1) and blending proportion of G. arborea to corn cob 25:75. However, the analysis of variance shows that TS and WA were significantly different, whereas, MOE and MOR were not significantly affected by mixing ratios and blending proportions. Finding of this study has shown that maize cob particles are suitable for cement bonded board production.

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

Solidification of Hazardous Wastes from Electroplating Industry (도금공장 유해폐기물의 고형화에 관한 연구)

  • Shin, Hang Sik;Her, Nam Ryoung;Koo, Ja Kong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.89-98
    • /
    • 1988
  • This research evaluated factors on cement-based solidification process designed for hazardous sludge produced from electroplating industry. Four factors of sand/cement ratio, water/cement ratio, amount of wet sludge and amount of a precipitator, were investigated in terms of leachability and compressive strength of the solidified materials. Results of triplicate tests and statistical analysis indicated that sand/cement ratio(S/C) had the greatest effect on leaching of Cr(VI) from the solidified materials while water/cement ratio(W/C) on Zn and compressive strength. Cr(VI) was fixed better than Zn by portland cement. An experimental modeing was developed to estimate leached metal concentration and compressive strength at a given condition. Proper mixing criteria were also suggested for the use of the solidified mixture as construction materials. In solidification of 30g dry sludge, optimal condition was studied for S/C ratio, W/C ratio and the weight of precipitator which were 1, 1.5 and 1.075g respectively.

  • PDF

Analysis of Correlation between Compressive Strength, Void Ratio and Chloride Diffusion Coefficient of Concrete Using Various Kinds of Cement (시멘트의 종류별 콘크리트외 강도 및 공극률과 염화물 확산계수의 상관관계 분석)

  • Yoon Eui-Sik;Lee Taek-Woo;Park Seung-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.735-742
    • /
    • 2005
  • The purpose of this study was to evaluate the salt water resistance of concrete depending on various types of cement. In this regard, 5 types of concrete were selected and their strength, void ratio and chloride ion diffusion characteristics were tested, and mutual correlation were analyzed. From the test results, the compressive strength and void ratio of concrete which using Type V cement was as good as Type I cement at long-term ages but the chloride diffusion coefficient of Type V cement was larger than Type I cement. And the concrete replacing some portion of the Type I cement with fly ash was superior in the cases of compressive strength, void ratio and the resistance of chloride ion permeation compared to the Type I cement with the lapse of ages. On the other hand, the compressive strength, the void ratio and the chloride diffusion coefficient of the concrete all indicated high levels of the correlation coefficient and the coefficient of determination regardless of the type of cement.

An Experimental Study on Mechanical Properties of Fly Ash in Mortar (플라이애쉬 혼입 모르터의 역학적 특성에 관한 실험적 연구)

  • Park, Il-Yong;Paik, Min-Su;Shon, Jong-Kyu;Choi, Soo;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.127-132
    • /
    • 1998
  • The purpose of this study is to find mechanical properties of fly ash ratio in mortar as flowing, setting time, compressive strength, suction ratio of water, length change ratio. As a result, it was shown that proper fly ash ratio replaced by cement weight in mortar was generally positive effect to flowing, compressive strength suction ratio of water, length change ratio. So if fly ash is well done quality control is considered as good replacement of cement.

  • PDF

Fire-Resistance Property of Cement Extruding Panel Mixed with Alpha-Hemihydrate Gypsum (알파형 반수석고를 혼입한 시멘트 압출 패널의 내화특성)

  • Choi, Duck-Jin;Lee, Min-Jae;Shin, Sang-choul;Kim, Ki-Suk;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.109-110
    • /
    • 2011
  • Gypsum is an important building material used to provide fire resistance to constructions by reducing their temperature rises. As the hardened gypsum is exposed to fire, evaporation of both the free water and the chemical bond water is easier than that in the cement extruding panel. The purpose of this study is to investigate the utilizability of alpha-hemihydrate gypsum to prevent spalling failure of cement extruding panel exposed to fire. This paper reports the fire-resistance property of a controled general cement extruding panel(C100), and gypsum-cement extruding panels(C50A50, A100) according to replacement ratio of alpha-hemihydrate gypsum. As a results, it is found that A100 and C50A50 are more effective to prevent the explosive spalling failure under standard fire condition than C100.

  • PDF

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

A Study on the Viscosity and Compaction of Polymer-Cement Composites According to Types of Polymer for Crack Repair (균열보수용 폴리머 시멘트 복합체의 폴리머 종류에 따른 점도와 충전성에 관한 연구)

  • Park, Dong-Yeop;Kwon, Woo-Chan;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.161-162
    • /
    • 2022
  • The purpose of this study is to determine the viscosity of the polymer-cement composites(PCCs) for crack repair of RC structures and to investigate its compaction. According to the study on the viscosity and compaction property of PCCs for crack repair, the viscosity of PCCs varies greatly depending on the polymer type and polymer cement ratio, and by mixing silica fume into PCCs, appropriate viscosity and excellent flow can be controlled without separation of cement and water. As a result of this study, basic data on the viscosity, fluidity, and compaction properties of PCCs for crack repair of RC structure can be obtained.

  • PDF