• Title/Summary/Keyword: water table depth

Search Result 112, Processing Time 0.031 seconds

Preliminary Survey on the Fauna of Sung-Yoo Cave (성류굴의 동식물에 관하여(예보) (聖留窟의 動植物에 關하여(豫報)))

  • Choi, Ki Chul
    • Korean Journal of Heritage: History & Science
    • /
    • v.2
    • /
    • pp.270-284
    • /
    • 1966
  • (1) The author surveyed the environmental factors and the fauna of Sung-Yoo Cave(360m in length) from November 29 to December 2, 1961. (2) Air temperature, water temperature, moisture, water depth, water gravity, oxygen concentration carbon dioxide concentration and pH in water of the cave were studied as enveronmental factors. The results are shown in the Table 1~7 and Fig.3. (3) Four species of troglobite (22.2%). seven of troglophile(38.9%). four of troglozene(22.2%). and three of parasite constitute the terrestrial fauna of Sung-yoo Cave. In the other hand, all of the aquatic fauna(4 species of fish) of the cave were troglozene. (5) None of the species of animals listed in this paper has ever been recorded in Korea.

The analysis of groundwater table variations in Sylhet region, Bangladesh

  • Zafor, Md. Abu;Alam, Md. Jahir Bin;Rahman, Md. Azizur;Amin, Mohammad Nurul
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.369-376
    • /
    • 2017
  • The trend analysis of the study was acquired by selecting multiyear monthly groundwater table data and monitors the wells in each sub-district under the study area. The intention of this research was to analyze the outcome of the non-parametric Mann-Kendall test at greater than the significance level which is 95% of groundwater level in Sylhet. The aptitude is effective at two conjunctures where the confidence bounds are 95% and it meets the estimate line of Sen's. To calculate and assess the spatial differences in the inanition of groundwater table, geostatistical methods was applied based on data from 27 groundwater wells during the period from January 1975 to December 2011 which were obtained from a secondary source, Bangladesh Water Development Board. The geographic information system was used to assess the spatial change in order to find the level of groundwater. Cross-validation errors were found within an advisable level in estimating the groundwater depth with different interpolation models of ordinary kriging methods. Finally, surface maps were generated with the best-fitted model. The southeast region was found highly vulnerable from groundwater level point of view. Northern region was detected highest hazard prone area for diverge groundwater using kriging method.

Simplified Formulae for Free Earth Supported Anchored Sheet-Pile Wall (앵커식 자유지지 널말뚝벽의 설계용 간편식)

  • Kim, Khi-Woong;Kwon, Min-Seok;Paik, Young-Shik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Sheet piles are often used to build continuous walls for the waterfront structures, and also used for some temporary structures, such as the braced cuts. Sheet pile walls may be divided into two basic categories that is cantilever and anchored. Stock(1992) developed an expedient format for determining the depth, maximum bending moment and anchor force of sheet pile wall for cantilever and free earth supported anchored wall. But, that is useful only in case that water table exists above the dredge line. In this study, a simplified formulae was developed for the design of the anchored free earth supported sheet pile wall both in sand and clay by solving the derived equations and regression analysis. It can be used whether the ground water table is above or under the dredge line.

  • PDF

An Evaluation of Stress-Strain Behaviour of Earth-Rockfill Dam and Causes of Crack due to Water Table Fluctuation (수위변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가)

  • 김상규;한성길;이민형;안상로
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.149-162
    • /
    • 2001
  • Longitudinal cracks have occurred on the crest of dams soon after their construction of two earth-rocfill dams located in Samlangjin. They are a pair of pumped storage dams constructed for generation of electrical power. The upper dam and lower dam are subjected to the variation of water level more than 10m once in a day alteratively. This paper deals with the finding of possible causes for longitudinal cracks about upper dam. The dominant cause was considered to be due to fluctuation of water load, for which numerical analysis was carried out using the hyperbolic model. In order to obtain parameters necessary to the analysis, a series of triaxial tests was performed for both core and rock material. Also dynamic triaxial test was performed to obtain dynamic properties of soils, which could be used as input data to simulate frequent variation of stress change due to the water fluctuation. It was known from the numerical analysis that the confining pressure of upper 4m from the top of the crest become negative after repeating of water load, meaning that tension cracks occurred in the top portion of the crest. The depth of longitudinal cracks has been investigated by digging test pit on the crest. This results agree with the field observation.

  • PDF

In-situ Monitoring of Matric Suctions in a Weathered Soil Slope (풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구)

  • 이인모;조우성;김영욱;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Rainfall-induced landslides in a weathered granite soil slope usually happen on shallow slip surfaces above the groundwater table. The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure (or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time elapse in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 in order to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. Finite-element transient seepage analyses are also conducted using SEEP/W. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with the change of depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

Estimating Irrigation Requirement for Rice Cropping under Flooding Condition using BUDGET Model

  • Seo, Mi-jin;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.246-254
    • /
    • 2015
  • This study explored the effect of rainfall pattern and soil characteristics on water management in rice paddy fields, using a soil water balance model, BUDGET. In two sites with different soil textural group, coarse loamy soil (Gangseo series) and fine soil (Hwadong series), respectively, we have monitored daily decrease of water depth, percolation rate, and groundwater table. The observed evapotranspiration (ET) was obtained from differences between water depth decrease and percolation rate. The root mean square difference values between observed and BUDGET-estimated ET ranged between 10% and 20% of the average observed ET. This is comparable to the measurement uncertainty, suggesting that the BUDGET model can provide reliable ET estimation for rice fields. In BUDGET model of this study, irrigation requirement was determined as minimum water need for maintaining water-saturated soil surface, assuming 100 mm of bund height and no lateral loss of water. The model results showed different water balance and irrigation requirement with the different soil profile and indicated that minimum percolation rate by plow pan could determine the irrigation requirement of rice paddy field. For the condition of different rainfall distribution, the results presented different irrigation period and amounts, representing the importance of securing water for irrigation against different rainfall pattern.

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

Growth and Tield Performance of Selected Forage Crops Cultivated on Imperfectly Drained Paddy Field under Subsurface Drainage by PVC Pipes (배수 약간 불량지 논에서 PVC 파이프 암거배수에 의한 사료작물 재배)

  • 김정갑;박근제;김건엽;한민수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.3
    • /
    • pp.219-224
    • /
    • 1996
  • Silage comkv, suwwn 19). sorghum $\times$ sudangrass(p. 988) and winter ryeNaton) were cultivated on imperfectly drained paddy field under two different draining methods, subsurface darinage by PVC pipes and open ditsched surface drainage. The crops were harvested at the stage of hard dough for corn and soft dough for wrghum and rye. The soil physical properties. soil colors. soil structure and soil wetness were improved in the subsurface drainage. Gravitational water table occured depth in 110 cm(dry season)~75cm(rain season). In soil profile description, yellowish brown with yellowish red mottles and well developed granular structure were found in the surface A horizon. The portion of solid phase in subsoils(B horizon) was reduced from 48.6%(undrained) to 43.7 %. A blocky structure with dark gray to gray were described in the open ditsched surface drainage. Severe wet depression of the crops was observed due to it's higher moisture contents, where the gravitational water occured depth in 25~37cm during the rainy season. The chemical properties of paddy soils were less affected by drainage methods. The concentration of available phosphate. organic matter and exchangeable K, Ca and Mg were decreased in the subsurface drained soils. The annual dry matter yields of com-rye cropping were 17.8 ton in the undrained, 21.6 ton in the open ditsch drainage and 35.9 ton/ha in the subsurface drainage.

  • PDF

Study on the effects of crop-yields under subsurface drainage system in the water-logging paddy fields (저수지에 있어서 암거배수 방법이 작물수량에 미치는 효과에 관한 시험연구)

  • 서승덕;김조웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.3
    • /
    • pp.4449-4461
    • /
    • 1977
  • Subsurface Drinage Problems arise from many causes. Flatland tends to be poorly drained, particularly where the subsoil permeability is low. There are many wet areas, however, where there is no evident connection between the area of seepage, or a high water table, and the topography of the site. High water tables may occur where the soil is either slowly or rapidly permeable, where the climate is either humid or arid, and where the land is either sloping or flat. This study is to bring light on subjects relating to increasing yield of crop and possibility of double crops a year in water logging paddy fields. Obtained results are briefly summarized as follows: 1. Effect of crop-yield in the plot A resulted 20.2 percent higher than the ordinary plot with yield of brown rice. 2. Possibility of double-crops a year is investigated. Effect of the barley production of the test plot resulted 168.2 percent higher than the other uplands near test plot with the yield of 1977 production and it is 3.8 percent higher compare with the yearly yields. 3. Decreasing depth of water level was measured 23.9mm per day and 14.3mm per day at the test plot and ordinary plot respectively and the amounts of subsurface drainage measured 30mm to 35mm per day. It is required that the relief well should be controled carefully and adequately. 4. Mean depth of ground water levl was measured 0.4∼0.5m regardless the width of corrugated pipe. It is significantly lowere than the ordinary plot(0.15∼0.20m) 5. The ground temperature of the test plot is higher 1 degree of centigarade or more than the ordinary plot and soil moisture content of the ordinary plot is higher 12.4∼27.8 percent than the plot reversely. There should be a relationship between rising of ground temperature and soil moisture.

  • PDF

The Effects of Time Scale Variation on The Runoff Calculation of TOPMODEL (TOPMODEL 유출계산에서 시간 스케일에 대한 영향 분석)

  • Kim, Kyung-Hyun;Lee, Hak-Su;Kim, Won;Jung, Sung-Won;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.125-136
    • /
    • 2002
  • The effects of the temporal scale of input hydrological data on runoff simulation have been studied using hydrological data with various time scales. TOPMODEL has been employed to explores these effects. The Genetic a1gorithm was used to calibrate model Parameters. The results of sensitivity analysis in various time scales provide the insight of parameter space for TOPMODEL operation of different time scale. The variation of temporal scale of input hydrological data appeared to have significant impacts on the model efficiency, average water table depth, the ratio of the surface runoff to the total runoff and the calibrated parameters. Generally, the longer the time scale, the more surface runoff and the less average water table death were calculated. It is found that the impact of lime scale to runoff simulation results from the structure of TOPMODEL and the hydrographic morphology.