• Title/Summary/Keyword: water surface variation

Search Result 864, Processing Time 0.037 seconds

Simulation of Groundwater Variation Characteristics of Hancheon Watershed in Jeju Island using Integrated Hydrologic Modeling (통합수문모형을 이용한 제주 한천유역의 지하수 변동 특성 모의)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.515-522
    • /
    • 2013
  • To investigate groundwater variation characteristics in the Hancheon watershed, Jeju Island, an integrated hydrologic component analysis was carried out. For this purpose, SWAT-MODFLOW which is an integrated surface-groundwater model was applied to the watershed for continuous watershed hydrologic analysis as well as groundwater modeling. First, ephemeral stream characteristics of Hancheon watershed can be clearly simulated which is unlikely to be shown by a general watershed hydrologic model. Second, the temporally varied groundwater recharge can be properly obtained from SWAT and then spatially distributed groundwater recharge can be made by MODFLOW. Finally, the groundwater level variation was simulated with distributed groundwater pumping data. Since accurate recharge as well as abstraction can be reflected into the groundwater modeling, more realistic hydrologic component analysis and groundwater modeling could be possible.

An Observational Study on the Temperature Rising Effects in Water Warming canal and Water Warming Pond (온수로 및 온수지에서의 수온상승효과에 관한 조사연구)

  • 홍종백;홍성범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18˚C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1.The degree of the rise of the water temperature can be decided by $\theta$x=$\theta$o +K L--v.h (T-$\theta$˚)Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2.A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was $\theta$x1 = 16.5 + 15.9(1-e -0.00018x), $\theta$x2 =18.8 + 8.4( 1-e -0.000298x)for the type I. and $\theta$x, = 19.6 + 12.8 ( 1-e -0.00041x) for the type II. 3.It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4.In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made ;Y= 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5.A monthly variation of the water temperature in the water warming canal was the highest in August during the irrigation period and the water temperature rose with the air temperature until August. However, it was blunted after then. 6.A rising degree of water temperature of the practical value in the water warming pond was higher than that of the theoritical equation by 69% for the type I. and 57% for the type II. Accordingly, it was possible to acquire the result near the practical value.$\theta$w-$\theta$o=[1-exp{ -h(1+2$\psi$) . X($\theta$w-$\theta$0)XC Here, C values are 1.69 for the type I. and 1.57 for the type II. 7.It was shown that the effect of the rise of water temperature was favorable when the thermal absorption was to be good by coloring the surface of the water warming pond and removing the bottom osmosis. 8.By enlarging the surface of water in comparison with the depth, and by having dead area of water in the water warming pond, this structure in the water warming pond is helpful for the rise of water temperature.

  • PDF

Mitigating the Urban Heat Island Phenomenon Using a Water-Retentive Artificial Turf System

  • Tebakari, Taichi;Maruyama, Tatsuya;Inui, Masahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.91-100
    • /
    • 2010
  • To investigate the thermal properties of a water-retentive artificial turf system (W-ATS), we estimated hydrologic parameters including thermal conductivity, heat capacity, and surface albedo for both the W-ATS and natural grass. We used a model experiment to measure surface temperature and evaporation for both the W-ATS and natural grass. We found that the W-ATS had lower thermal conductivity than natural grass did, and it was difficult for the W-ATS to convey radiant heat to the ground. Compared to natural grass, the W-ATS also had lower heat capacity, which contributed to its larger variation in surface temperature: the W-ATS had higher surface temperatures during daytime and lower surface temperatures during nighttime. The albedo of the W-ATS was one-quarter that of natural grass, and reflected shortwave radiation from the W-ATS surface was lower than that from the surface of natural grass. These results indicate that the W-ATS caused the soil temperature to increase. Furthermore, evaporation from the W-ATS was one-quarter the value of evapotranspiration from natural grass.

  • PDF

Water Mass Stability of Deep Ocean Water in the East Sea (동해 심층수의 수괴 안정성)

  • Moon D.S.;Jung D.H.;Shin P.K.;Kim H.J.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.285-289
    • /
    • 2004
  • Oceanographic observation and qualitative analysis for deep ocean water in the East Sea were carried out from January 2003 to January 2004, in order to understand the characteristics of deep sea water in the East Sea. Temporal and spatial variation of water masses were discussed from survey of the study area including the coastal sea of Kwangwon province in where the polar front mixing cold and warm water masses were formed. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW) (2) Tsushima Surface water (TSW) (3) Tsushima Middle Water (TMW) (4) North Korea Cold Water (NKCW) and (5) East Sea Proper Water (ESPW). In winter, surface water in coastal sea of Kwangwaan Kosung region were dominated by North Korean Cold Water (NKCW). As Tsushima warm current were enforced in summer, various water masses were vertically emerged in study area, in order of TSW, TMW, NKCW and ESPW. It is highly possible that the LSSW which occurred at surface water of september is originated from influx of fresh water due to the seasonal rainy spell. Nevertheless water masses existed within surface water were seasonally varied, water quality characteristics of East Sea Proper Water (ESPW) under 300 m did not changed all the seasons of the year.

  • PDF

Effects of Water Temperature Inversion on the Stratification Variation in October and December in the South Sea of Korea (한국 남해에서 10월과 12월의 수온역전현상이 성층변동에 미치는 영향)

  • Lee, Chung-Il;Koo, Do-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • In order to illustrate the effects of water temperature inversion on the stratification variation in the South Sea of Korea, water temperature, salinity, and density measured in October and December 1999 by National Fisheries Research and Development Institute were reviewed. In October and December of 1999, temperature inversion occurred mainly between 25m and 75m, and in particular in depth of water, in December temperature inversion layer also was formed in the surface layer. In case of October and December, the Tsushima Warm Current (TWC), warm and saline water, was one of motors, and in December, influence of surface cold water was added Although northerly wind prevails in October and December, in October, expanding of the South Korean Coastal Waters (SKCW) towards offshore is not clear, but in December when wind speed is relatively greater than that in October and strength of the TWC become weak, the SKCW spreads towards offshore through the upper layer. Stratification variation was higher along the area where temperature inversion occurred.

  • PDF

Evaporation Characteristics of a Water Droplet Containing Sodium Acetate Trihydrate as an Additive (첨가제로 아세트산 나트륨-3수화물을 함유한 물 액적의 증발 특성)

  • Park, Jae-Man;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.61-68
    • /
    • 2004
  • The evaporation phenomena of waterr droplet which has sodium acetate trihydrate($CH_3COONa{\cdot}3H_2O$) as a fire suppression additive were studied. Solutions of sodium salt up to 50% and heated stainless-steel surface were used in the experiment. The evaporation process was recorded using a charge-coupled-device camera at 120 frames per second. The average evaporation rate of the sodium acetate trihydrate soluation was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid film and change of surface tension. The variation of liquied film diameter was measured by time and it was increased by the hot surface temperature increase.

SEASONAL AND INTER-ANNUAL VARIATION OF SEA SURFACE CURRENT IN THE GULF OF THAILAND

  • Sojisuporn, Pramot;Morimoto, Akihiko;Yanagi, Tetsuo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.352-355
    • /
    • 2006
  • In this study, the seasonal and inter-annual variation of sea surface current in the Gulf of Thailand were revealed through the use of WOD temperature and salinity data and monthly sea surface dynamic heights (SSDH) from TOPEX/Poseidon and ERS-2 altimetry data during 1995-2001. The mean dynamic height and mean geostrohic current were derived from the climatological data while SSDH data gave monthly dynamic heights and their geopstrophic currents. The mean geostrophic current showed strong southward and westward flow of South China Sea water along the gulf entrance. Counterclockwise eddy in the inner gulf and the western side of the gulf entrance associated with upwelling in the area. Seasonal geostrophic currents show basin-wide counterclockwise circulation during the southwest monsoon season and clockwise circulation during the northeast monsoon season. Upwelling was enhanced during the southwest monsoon season. The circulation patterns varied seasonally and inter-annually probably due to the variation in wind regime. And finally we found that congregation, spawning, and migration routes of short-bodied mackerel conform well with coastal upwelling and surface circulation in the gulf.

  • PDF

RAINFALL AND RUNOFF VARIATION ANALYSIS FOR WATER RESOURCES MANAGEMENT STRATEGIES

  • Sang-man;Heon, Joo-;Jong-ho;Kum-young
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.111-121
    • /
    • 2004
  • For the long-term strategic water resources planning, forecasting the future streamflow change is important to meet the demand of a growing society. The streamflow variation to the decade-long precipitation was investigated for the two major stage gauging stations in Korea. Precipitation and runoff characteristics have been analyzed at Yongwol stream stage in the Han River as well as Sutong stream stage in the Kum River for the future water resources management strategies. Monte Carlo method has been applied to estimate the future precipitation and runoff. Based on the trend line of 10-year moving average of runoff depth for the historical runoff records, the relation between runoff and the time variation was examined in more detail using regression analysis. This study showed that the surface flows have been significantly decreased while precipitation has been stable in these basins. Decreasing in runoff reflects the regional watershed characteristics such as forest cover changes. The findings of this study could contribute to the planning and development for the efficient water resources utilization.

  • PDF

Seasonal Water Change Assessment at Mahanadi River, India using Multi-temporal Data in Google Earth Engine

  • Jena, Ratiranjan;Pradhan, Biswajeet;Jung, Hyung-Sup;Rai, Abhishek Kumar;Rizeei, Hossein Mojaddadi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • Seasonal changes in river water vary seasonally as well as locationally, and the assessment is essential. In this study, we used the recent technique of post-classification by using the Google earth engine (GEE) to map the seasonal changes in Mahanadi river of Odisha. However,some fixed problems results during the rainy season that affects the livelihood system of Cuttack such as flooding, drowning of children and waste material deposit. Therefore, this study conducted 1) to map and analyse the water density changes and 2) to analyse the seasonal variation of river water to resolve and prevent problem shortcomings. Our results showed that nine types of variation can be found in the Mahanadi River each year. The increase and decrease of intensity of surface water analysed, and it varies in between -130 to 70 ㎥/nf. The highest frequency change is 2900 Hz near Cuttack city. The pi diagram provides the percentage of seasonal variation that can be observed as permanent water (30%), new seasonal (28%), ephemeral (12%), permanent to seasonal (7%) and seasonal (10%). The analysis is helpful and effective to assess the seasonal variation that can provide a platform for the development of Cuttack city that lies in Mahanadi delta.

The Optimized Formulas of Rye Bread on the Sensory Properties using RSM (RSM을 적용한 관능 특성에 따른 Rye Bread의 최적 Formulas에 대한 연구)

  • Kwon Kyung-Soohn
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.278-285
    • /
    • 2004
  • The effects of water, rye flour and vital gluten on the sensory properties of bread were studied by response surface methodology and sensory evaluations. A response surface model was used to evaluate the effects observed and to determine the optimum variations for rye bread. The study included 12 combinations of the following independent variables: Water(57, 62, 67%), Rye flour(0, 10, 30, 50%), and Vital gluten(0, 1, 3, 5%). Bread quality attributes determined were specific volume, color, texture, appearance, taste, chewiness, moisture, overall. Rye bread specific volume, sensory evaluation values and Instrumental testing results were significantly affected by variety (water, rye flour and vital gluten). Rye bread with a high specific volume was produced using water 67%, rye flour 10% and vital gluten 3%. Whereas, rye breads with a high overall sensory evaluation were water 62 %, rye flour 10 % and vital gluten 5%. And Specific volume predicted and overall preference also was shown high. It was shown that the experimental design used provided information about the rye bread of variation of water, rye flour and vital gluten and can be a useful supplement to standardized and optimized formulas in rye bread making. The results suggest that water, rye flour, vital gluten can be combined in rye bread making at various levels, contributing to optimize the functional properties of rye bread. These result represents that breads loaf volume related to directly consumer preference.