• Title/Summary/Keyword: water storage tanks

Search Result 113, Processing Time 0.019 seconds

The distribution and antimicrobial susceptibility of pathogenic microorganisms isolated from chicken slaughtering and processing procedure (닭 도계 및 가공공정 중 유해미생물의 분포와 항생제 감수성)

  • Seol, Kuk-Hwan;Kim, Ki Hyun;Jo, Su-Mi;Kim, Young Hwa;Kim, Hyun-Wook;Ham, Jun-Sang
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • This study was performed to analyze the distribution and antimicrobial resistance of pathogenic microorganisms isolated from the carcass and environments of chicken processing plant located in Gyeonggi province from October to November in 2010. Chicken slaughterhouse was visited 3 times and totally 40 samples were collected from chicken carcass before and after washing (n=14), chicken cuts (n=7), cooling water (n=8), brine (n=2), cutting knives (n=7) and working plate (n=2). Whole-chicken rinsing technique (for chicken carcasses) and swab technique (for working plate and knives) were used to analyze the distribution of pathogenic microorganisms. In addition, brine and chilling water from storage tanks were gathered using sterilized tubes and used as samples. The matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for whole cell fingerprinting in combination with a dedicated bioinformatic software tool was used to identify the isolated microorganisms. The pathogenic microorganisms, such as Bacillus cereus (n=8) and Staphylococcus aureus (n=9), were isolated form the chicken processing process (chicken carcasses of before and after chilling, chicken cuts, and working plate). The antimicrobial susceptibility of those isolated microorganisms was analyzed using 21 antimicrobial agents. In the case of B. cereus, it showed 100% of resistance to subclasses of penicillins and peptides, and it also resistant to cephalothin, a member of critically important antimicrobials (CIA), however there was no resistance (100% susceptible) to vancomycin and chloramphenicol. S. aureus showed 100% resistance to subclasses of peptides and some of penicillins (penicillin and oxacillin), however, it showed 100% susceptibility to cephalosporins (cefazolin and cephalothin). All of the tested pathogens showed multi drug resistance (MDR) more than 4 subclasses and one of B. cereus and S. aureus showed resistance to 9 subclasses. After the ban on using the antimicrobials in animal feed in July 2011, there would be some change in microbial distribution and antimicrobial resistance, and it still has a need to be analyzed.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Studies on the Sources of Bacterial Contamination in U. H. T. Processed Milk (살균시유(殺菌市乳)의 세균오염원(細菌汚染源)에 관한 연구(硏究))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1980
  • In order to elucidate the source of bacterial contamination during processing U. H. T. milk and to ensure its hygienic control, bacterial numbers were determined each step of the processes on the milks, water, tanks and pipe lines, and environments. The results obtained were as follows. 1. The viable numbers of mesophilic bacteria were $1.2{\sim}1.9{\times}10^7/ml$ of milk in the storage tank and in pipe line connected to the preheater. These were decreased to $7.0{\times}10cells{\sim}3.4{\times}10^2cells/ml$ after preheating and homogenization, and to $1.0{\times}10cells/ml$ after sterilization, then increased up to $1.2{\times}10^2cells/ml$ after packing. 2. The numbers of thermophilic bacteria were $5.0{\times}10cells{\sim}1.0{\times}10^2cells/ml$ of milk before preheating ; $3.0{\sim}5.0{\times}10cells/ml$ after homogenization ; none in the sterilizer and surge tank ; and $1.0{\sim}8.0{\times}10cells/ml$ after packing. 3. The levels of psychrophilic bacteria were $1.0{\sim}3.7{\times}10^6cells/ml$ of milk before preheating ; $1.0{\sim}4.0{\times}10cells/ml$ after homogenization ; $1.0{\times}10cells/ml$ after sterilization ; and $2.0{\times}10cells{\sim}2.5{\times}10^2cells/ml$ after packing. 4. No coliform bacteria were detected after sterilization, while the level before preheating was $2.1{\times}10^4cells{\sim}6.5{\times}10^5cells/ml$ of milk. 5. The level of mesophiles was $3.0{\times}10cells{\sim}7.4{\times}10^2cells$ in the environmental air, water supply, and unfilled packs and bottles ; that of thermophiles $1.0{\sim}3.0{\times}10cells$ in the air and water ; that of psychrophiles $1.0{\times}10cells{\sim}1.0{\times}10^2cells$ in the air, water, packs and bottles ; however no coliform was detected.

  • PDF