• 제목/요약/키워드: water sorption

검색결과 388건 처리시간 0.029초

Biodentine과 복합레진, 글래스아이오노머의 물흡수도, 물용해도에 관한 비교 분석 (Comparison of water sorption / solubility of Biodentine, composite resin and glass ionomer cement)

  • 이의중;홍정민;민정범
    • 대한치과의사협회지
    • /
    • 제57권5호
    • /
    • pp.264-268
    • /
    • 2019
  • Objectives: This study aimed to measure the water sorption / solubility of Biodentine, composite resin and glass ionomer cement. Materials and Methods: The materials used in this study were Biodentine(BD), Filtek Z250(FZ) and Ketac Molar(KM). Twenty disc-shaped specimens of each material were prepared of 6mm diameter and 1mm thickness. All specimens were desiccated for 24 hours and weighed(m1). After then, They were immersed in distilled water and stored at $37^{\circ}C$. 1 week later, They were washed with running water, wiped with absorbent paper and weighed(m2). Finally, They were dried for 24 hours and weighed(m3). Water sorption and solubility, net water uptake were calculated. Results: KM and BD showed high water sorption than FZ(P<0.05). KM and BD exhibited similar water sorption(P<0.05). BD exhibited high solubility than KM(P=0.012). BD exhibited high net water uptake than FZ(P=0.008). Conclusion: Biodentine showed higher water sorption, solubility and net water uptake than Filtek Z250 and Ketac Molar. Within limitation of this study, it is not recommended to use Biodentine for permanent restoration.

  • PDF

Thermal Properties and Water Sorption Behaviors of Epoxy and Bismaleimide Composites

  • Seo, Jong-Chul;Jang, Won-Bong;Han, Hak-Soo
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.10-16
    • /
    • 2007
  • In this work, we prepared epoxy/BMI composites by using N,N'-bismaleimide-4,4'-diphenylmethane (BMI), epoxy resin (diglycidyl ether of bisphenol-A (DGEBA)), and 4,4'-diamino diphenyl methane (DDM). The thermal properties and water sorption behaviors of the epoxy and BMI composites were investigated. For the epoxy/BMI composites, the glass transition and decomposition temperatures both increased with increasing BMI addition, which indicates the effect of BMI addition on improved thermal stability. The water sorption behaviors were gravi-metrically measured as a function of humidity, temperature, and composition. The diffusion coefficient and water uptake decreased and the activation energy for water diffusion increased with increasing BMI content, indicating that the water sorption in epoxy resin, which causes reliability problems in electronic devices, can be diminished by BMI addition. The water sorption behaviors in the epoxy/BMI composites were interpreted in terms of their chemical and morphological structures.

경(硬)캅셀제(劑)의 흡습(吸濕)에 관(關)한 연구(硏究) (Studies on Water Vapor Sorption through Hard Gelatin Capsules)

  • 박종훈
    • Journal of Pharmaceutical Investigation
    • /
    • 제2권1호
    • /
    • pp.40-51
    • /
    • 1972
  • Water vapor sorption of corn starch in various protective film coated capsules in 100% RH chamber for 14 days were as follows: The percent of water vapor sorption were 28.63% in uncoated capsule, 25.16% in hydroxy propylcellulose(HPC) coated capsule, 15.59% in 2-methyl-5-vinyl pyridine-methyl acrylated-methacrylic acid (MPM) coated capsule and 15.50% in polyvinyl acetal diethyl amino acetate(AEA) coated capsule. 2. Water vapor sorotion of magnesium trisilicate in various protective film coated capsules in 100% RH chamber for 14 days were as follows. The percent of water vapor sorption were 13.91% in uncoated capsule, 13.30% in HPC-coated capsule, 10.87% in MPM-caated capsule and 9.9% in AEA-coated capsule. 3. Water vapor sorption of magnesium carbonate in various protective film coated capsules in 100% RH chamber for 14 days were as follows: The percent of water vapor sorption were 12.48% in uncoated capsule, 10.72% in HPC-coated capsule, 8.10% in MPM coated capsule and 7.8% in AEA-coated capsule. 4. MPM-coated capsules and AEA-canted capsules were mere effective to protect water vapor sorption than HPC-coated capsules.

  • PDF

수종의 레진 시멘트의 용해도와 수분흡착에 관한 연구 (A STUDY ON THE SOLUBILITY AND THE WATER SORPTION OF VARIOUS RESIN CEMENTS)

  • 황유진;조인호;임주환;임헌송
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.1-14
    • /
    • 2005
  • Statement of problem. Among the physical properties of adhesion luting cement, the aspect that requires the most important factor is the degree of solubility and water sorption. Dissolution or an inadequate due to excessive water sorption inside the oral cavity compromises the while concurrently increasing the susceptibility to secondary dental caries. Susceptibility to dissolution and difficulty of removing remnant cement from the gingival sulcus have hindered the use of dental resin cement in the clinical practice, but the improved characteristics of newer generation resin cements have interest in and enabled resin cements to be widely used in adhesion of fixed prosthesis, such as laminate veneers and all-ceramic crowns. Purpose. The purpose of this study is to compare and analyze the degrees of solubility and water sorption of a variety of resin cements widely used for clinical purposes with different curing methods. Material and methods. Self-curing resin cements, $Avanto^{(R)}$, $C&B^{TM}$ CEMENT and Superbond C&B cements comprised group 1, 2 and 3. The dual-curing resin cements $Panavian^{TM}$ F, $Calibra^{(R)}$ and $Variolink^{(R)}$ II were divided into groups 4, 5, and 6, respectively. The investigation was carried out using disc-shaped specimens as specified by ANSI/ADA Specification No. 27. The degree of water sorption, water solubility and lactic acid solubility of each test group was analyzed statistically leading to the following conclusion. Results. The degree of water sorption was shown to increase in the following order : group 6, 5, 4, 2, 1 and 3. There were significant differences between the water sorption of each group. Results of the degree of water solubility were shown to increase in the following order : group 6, 5, 4, 2, 1 and 3. Statistically significant differences were found between each group, with the exception of groups 1 and 3. Finally, the degree of lactic acid solubility was found to increase in the following order : group 6,5,4,2,3 and 1. Significant differences were found between each group. In general dual-curing resin cements displayed substantially lower values than self-curing resin cements with regard to water sorption, water solubility, and lactic acid solubility. Conclusions. From the results of this study, dual-curing resin cements show a significantly lower degree of water sorption and solubility than their self-curing counterparts. Clinically, when selecting resin cements, the product with a lower degree of water sorption and solubility are preferred. The results of this study indicate that the use-of dual-curing resin cements is preferable to self-curing cements.

Intrinsic UV Reflection and Fluorescence Studies for Water Sorption in Polycarbonate, Polyurethane and Poly(Ethylene Terephthalate) Films

  • Kim Min Sun;Sung Chong Sook Paik
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.127-130
    • /
    • 2005
  • Intrinsic UV reflection and fluorescence behaviors of polycarbonate, polyurethane and poly(ethylene terephthalate) films were investigated in order to characterize the interaction of water in these films. During water sorption process, UV reflection spectra of polycarbonate and polyurethane films showed little peak position changes. Fluorescence emission spectra of polycarbonate films showed red spectral shifts from 332 nm with water immersion time. This red-shifted peak could be due to phenyl-2-phenoxybenzoate, which is one of the major thermal degradation products in polycarbonate. Fluorescence peaks of polyurethane films appeared at two different positions and the ratio of these peak intensities increased with increasing immersion time. In the case of PET films, the UV reflection spectrum showed the peak intensity around 340 nm to change in response to water sorption. The fluorescence near 388 nm probably due to ground state dimer exhibited sensitivity with water sorption, when excited at 340 nm.

Mechanisms of Cu(II) Sorption at Several Mineral/Water Interfaces: An EPR Study

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • 한국자기공명학회:학술대회논문집
    • /
    • 한국자기공명학회 2002년도 International Symposium on Magnetic Resonance
    • /
    • pp.72-72
    • /
    • 2002
  • In most traditional sorption study in environmental conditions, experimental sorption data have been measured and interpreted by empirical ways such as partition coefficient and sorption isotherms. A mechanistic understanding of heavy metal interactions with various minerals (metal oxides, clay minerals) in aqueous medium is required to describe the behavior of radioactive metal ions in the environment. Various spectroscopic methods provide direct or indirect information on sorption mechanisms involved. We applied EPR (Electron Paramagnetic Resonance) spectroscopy to investigate the nature of metal ion sorption at water/mineral interfaces using Cu(II) as a spin probe. The major sorbed species and their motional state was identified by their EPR spectra. They showed distinct signals due to their strength of binding, local structure and motional state. The EPR results together with macroscopic sorption data show that sorption involved at least three different mechanisms depending on chemical environments (1).

  • PDF

모사해수 조건에서 회분식 실험을 이용한 제강슬래그의 카드뮴 흡착 특성 평가 (Assessment of the Sorption Characteristics of Cadmium onto Steel-making Slag in Simulated Sea Water Using Batch Experiment)

  • 김은협;이성수;이광헌;김용우;박준범;오명학
    • 한국지반공학회논문집
    • /
    • 제27권4호
    • /
    • pp.43-50
    • /
    • 2011
  • 본 연구에서는 국내 해안지역에 존재하는 카드뮴을 산업 폐기물인 제강슬래그를 이용하여 제거하고자, 제강슬래그의 카드뮴 제거 성능을 평가하였다. 이를 위해 회분식 실험으로 등온흡착 실험과 동적흡착 실험을 수행하였다. 등온 흡착 실험을 통해 제강슬래그의 카드뮴 제거는 Langmuir 모델이 Freundlich에 비해 잘 맞음을 확인하였고 최대 흡착량(${\beta}$)을 계산할 수 있었다. 동적흡착 실험결과의 경우, 유사이차 모델을 이용해 해석하였고 카드뮴의 초기농도가 높을수록 평형 흡착량 ($q_e$)은 증가하였고 반응상수 ($k_2$)와 초기반응속도 (h)는 줄어들었다. 모사해수 조건에서 $q_e$는 증류수 조건과 큰 차이가 없었지만 $k_2$와 h는 증류수에 비해 줄어들었다. 또한, 유사이차 모델을 통해 예측된 $q_e$이 등온흡착 실험에서 구한 평형 흡착량 ($C_s$)과 유사해 동적흡착 실험결과로 등온흡착 실험결과를 예측하는 것이 가능함을 확인하였으며 유사이차 모델을 이용해 목표 제거율에 도달하는 반응시간을 계산할 수 있었다.

자성체 이온교환수지(MIEX®)를 이용한 수중의 과불화화합물(PFCs) 제거 특성 (Characteristics of Removal of Perfluorinated Compounds (PFCs) Using Magnetic Ion Exchange Resin (MIEX®) in Water)

  • 손희종;염훈식;김경아;유상원;권기원
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.1009-1017
    • /
    • 2013
  • Perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) is a new persistent organic pollutants of substantial environmental concern. This study investigated the potential of magnetic ion exchange resin (MIEX$^{(R)}$) as the adsorbent for the removal of PFOA and PFOS from Nakdong River water. In our batch experiments, we studied the effect of some parameters (pH, temperature, sulfate concentration) on the removal of PFOA and PFOS. The results of sorption kinetics on MIEX$^{(R)}$ show that it takes 90 min to reach equilibrium but the economical contact time and dosage were 30 min and 10 mL/L. An increase in pH (pH 6~10) leads to a decrease in PFOA (2.0%) and PFOS (3.6%) sorption on MIEX$^{(R)}$. The sorption of both PFOA and PFOS decreases with an increase in ionic strength for sulfate ion (${SO_4}^{2-}$), due to the competition phenomenon. An increase in water temperature ($8^{\circ}C{\sim}28^{\circ}C$) in water leads to a increase in PFOA (2.8%) and PFOS (4.3%) sorption on MIEX$^{(R)}$. Based on the sorption behaviors and characteristics of the adsorbents and adsorbates, ion exchange and hydrophobic interaction were deduced to be involved in the sorption, and hemi-micelles possibly formed in the intraparticle pores.

종이내 수분확산 (제3보) -종이 표면의 수증기-흡습성에 관한 이론적 고찰- (Molecular Diffusion of Water in Paper(III) -Theoretical analysis on vapor sorption properties of fiber surface -)

  • 윤성훈;전양;박종문
    • 펄프종이기술
    • /
    • 제31권1호
    • /
    • pp.61-71
    • /
    • 1999
  • The study aimed at the theoretical analysis of vapor sorption properties of, pp.rmaking fibers. Water vapor affinity and sorption thermodynamic properties of fiber constituents were evaluated based on Henry's law and Hildebrand's solubility theory. Theoretical equilibrium moisture content(ThEMC) on fiber surface was estimated using functional group contribution. Crystallinity of cellulose in fiber significantly controlled the water vapor solubility. Comparisons of the measured equilibrium moisture content data and the estimated ThEMC data coincidently suggested the fact that crystallinity of cellulose in fibers was around 60% to 70%. Carbohydrates constituents including amorphous cellulose and hemicellulose in fibers showed higher vapor solubility than lignin molecules. High correlation existed between ThEMC and vapor solubility as well as between ThEMC and solubility parameter. In the thermodynamic analysis on water-vapor sorption process in fibers, the sorption enthalpy increased as RH increased, whereas sorption entropy and free energy decreased with increasing RH.

  • PDF

시판 복합레진의 물성에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON SOME PHYSICAL CHARACTERISTICS OF COMPOSITE RESINS - A study of the hardness, water sorption and solubility)

  • 박상덕;박동수;이찬영;이정석
    • Restorative Dentistry and Endodontics
    • /
    • 제10권1호
    • /
    • pp.17-30
    • /
    • 1984
  • This study was done to evaluate the hardness, water sorption and solubility values of twelve well known composite resins, and to compare each other. For the hardness test, the specimens were made in cylinder form with 4mm in diameter and 2mm in thickness as a modification of the American Society for Testing and New Materials, 1966, and for water sorption and solubility tests, the specimens were prepared in same shape of 20mm in diameter and 0.5mm in thickness as a modification of the ADA Specification No. 12. The results were obtained as follow: 1. The hardness range were from 17.9 to 87.5 respectively. As time passed by, the noticable change was evident in early 12 hours. 2. Of the water sorption. the range was from 0.38 to 0.93. The significant change was appeared within 12 hours and on 3 day by 1 week except four brands. 3. Of the water solubility, the range was 0.06 to 0.16. The highest value was found within early 24 hours. 4. Generally, four brands could be chosen as preferable products of hardness. water sorption and solubility tests according to the ADA Specification No. 12.

  • PDF