• Title/Summary/Keyword: water soluble fiber

Search Result 181, Processing Time 0.027 seconds

Topical Formulations of Water-Soluble Chitin as a Wound Healing Assistant -Evaluation on Open Wounds Using a Rabbit Ear Model-

  • Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.219-223
    • /
    • 2005
  • Water-soluble chitin (WSC) was prepared by carefully deacetylating chitins to about $50\%$ of N-acetyl content. Topical formulations based on WSC were prepared and their effects on wound healing were evaluated on a rabbit ear model. Full-thickness, open skin wounds were made on the ears of rabbits and WSC ointments were embedded in the open wounds. The application of WSC ointments significantly accelerated wound healing and wound contraction. The areas of epithelial-ization and granulation tissues in WSC ointment group are remarkably larger than those in control group (no treatment) and in placebo group (treated with ointment-base materials). A large number of grown granulation tissues including dense fibroblast deposition were observed under the thickened epithelium of the wound treated with WSC ointments. The number of inflammatory cells in WSC ointment group was significantly decreased compared with those in control and placebo groups, indicating that WSC would give low stimuli to wounds and prevent excessive scar formation. Neovascularization was the most prominent in WSC ointment group. Wound contraction in WSC ointment group was much larger than those in control and placebo groups. Overall results demonstrate that the topical formulation based on WSC is considered to become an excellent dressing as a wound healing assistant.

A Study on the Water-soluble Fiber at the Room Temperature using Carboxymethylcellulose(CMC) Synthesis (Carboxymethylcellulose 제조공정을 이용한 상온에서의 수용성 섬유에 관한 연구)

  • Song, Ho-Jun;Choi, Youngmin;Park, Jin-Won
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.105-116
    • /
    • 2005
  • Carboxymethylcellulose(CMC) which is water soluble at room temperature was manufactured from the cellulose material in this study. Experimental parameters were reaction temperature, time and concentration of NaOH and monochloroacetic acid. CMC was tested for solubility, degree of substitution(D.S.) and tensile strength. The surface structure of CMC fiber was tested using scanning electron microscope(SEM). CMC manufactured from viscose rayon was affected by the chemical concentration rather then the reaction time and temperature. Also, degree of substitution is closely related to the solubility of the CMC.

  • PDF

Effects of wilting on silage quality: a meta-analysis

  • Muhammad Ridla;Hajrian Rizqi Albarki;Sazli Tutur Risyahadi;Sukarman Sukarman
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1185-1195
    • /
    • 2024
  • Objective: This meta-analysis aimed to evaluate the impact of wilted and unwilted silage on various parameters, such as nutrient content, fermentation quality, bacterial populations, and digestibility. Methods: Thirty-six studies from Scopus were included in the database and analyzed using a random effects model in OpenMEE software. The studies were grouped into two categories: wilting silage (experiment group) and non-wilting silage (control group). Publication bias was assessed using a fail-safe number. Results: The results showed that wilting before ensiling significantly increased the levels of dry matter, water-soluble carbohydrates, neutral detergent fiber, and acid detergent fiber, compared to non-wilting silage (p<0.05). However, wilting significantly decreased dry matter losses, lactic acid, acetic acid, butyric acid, and ammonia levels (p<0.05). The pH, crude protein, and ash contents remained unaffected by the wilting process. Additionally, the meta-analysis revealed no significant differences in bacterial populations, including lactic acid bacteria, yeast, and aerobic bacteria, or in vitro dry matter digestibility between the two groups (p>0.05). Conclusion: Wilting before ensiling significantly improved silage quality by increasing dry matter and water-soluble carbohydrates, as well as reducing dry matter losses, butyric acid, and ammonia. Importantly, wilting did not have a significant impact on pH, crude protein, or in vitro dry matter digestibility.

Effective Components and Nitrite Scavenging Ability of Root and Leaves a Angelica gigas Nakai (당귀와 승검초의 기능성 성분과 아질산염 소거능)

  • Joung, Sun-Woo;Kim, Hyang-Sook
    • Korean journal of food and cookery science
    • /
    • v.22 no.6 s.96
    • /
    • pp.957-965
    • /
    • 2006
  • This research was conducted to examine the usability of Dangui (Angelica gigas Nakai, Root) and Seungumcho (Angelica gigas Nakai, Leaf) as functional food in aspects of their functional components and nitrite scavenging ability. Analysis of proximate composition showed that Dangui contains more moisture, crude lipid and crude protein than Seungumcho. On the other hand, Seungumcho contains more than twice mont of crude ash and crude fiber than Dangui. Dangui showed higher contents in phosphorus, iron, magnesium, and Seungumcho showed higher contents in copper, calcium, sodium, potassium compare to each other. Substances such as calcium, magnesium and iron that showed high contents in Dangui and Seungumcho are the most important inorganic substances. Total dietary fiber(TDF) of Dangui, sum of IDF and SDF, was 24.2%, and Seungumcho showed 28.18%. vitamin C contents of a 29.690.33 mg/100g appeared only in Seunggumcho. Total phenol contents of Dangui was 0.100${\pm}$002% and that of Seungumcho 0.0900${\pm}$008%. Nnitrite Scavenging ability of both water soluble and methanol soluble extracts were more than 90% at pH 1.2, and it decreased as pH level adjusted to pH 4.2, pH and 6.0.

Non-Starch Polysaccharides of Cell Walls in Glutinous Rice, Rice and Black Rice (점미, 백미, 흑미 세포벽의 비전분성 다당류의 성분분석)

  • ;;Kimiko Othani
    • Journal of the Korean Home Economics Association
    • /
    • v.39 no.1
    • /
    • pp.91-102
    • /
    • 2001
  • The non-starch polysaccharides in the cell wall of rice, glutinous rice, and black rice, were analyzed. They were fractionated into fractions; water-soluble, hot writer-soluble, ammonium oxalate-soluble, sodium hydroxide-soluble, potassium hydroxide-soluble, and the alkali-insoluble, according to the solvent solubility. The dietary fiber contents were 5.4% in glutinous rice, 4.2% in rice and 7.5% in black rice. The sodium hydroxide soluble fibers were abundant in each kind of rice, especially 4.01% in black rice. The water soluble fibers were 80% of dietary fiber in glutinous rice, 66% in rice, 86% in black rice. It was supposed that the content of the water soluble fibers in rice was increased by pounding. Pectic substances in water soluble fibers, hot water soluble fibers, and ammonium oxalate soluble fibers fraction, were 2.4% in glutinous rice fraction,1.59% in rice, and 1.12% in black rice. Alkali soluble fibers were considered as hemicellulose. Black rice contained 5.80% of hemicellulose, which was more than twice as much as glutinous rice(2.58%) and rice(2.22%). Alkali insoluble fibers were considered as cellulose, which showed no considerable difference. Among samples content of uronic acid in glutinous rice, rice and black rice were 0.9%, 0.66%, 1.8% respectively. Uronic acid of black rice was twice more than other samples tested. The fraction of black rice that uronic acid was extracted at most was the fraction of sodium hydroxide. Mono saccharides of the fraction was the glucose, the arabinose, the xylose.

  • PDF

Characteristics of Water Soluble Fractions of Wheat Bran Treated with Various Thermal Processes (열처리 밀기울의 수용성 분획의 특징)

  • Hwang, Jae-Kwan;Kim, Chong-Tai;Cho, Sung-Ja;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.934-938
    • /
    • 1995
  • Water soluble fractions (WSF) of wheat bran treated with thermal processes such as autoclaving, microwaving and extrusion were characterized to investigate the structural response of plant cell wall to thermal and mechanical energy. From the chemical analysis and gel filtration chromatography of WSF, gelatinization of starch was found to be the primary solubilizing mechanism of wheat bran, followed by the structural disintegration of fibrous non-starch cell wall materials. It was also found that extrusion process resulted in degrading relatively higher molecular weight non-starch polysaccharides from the cell wall. GC analysis of water soluble non-starch polysaccharides indicates that the arabinoxylan residues of cell wall are the most susceptible site to thermal treatments studied. In particular, the degrading degree of cell wall of wheat bran is the most significant for extrusion accompanying both high temperature and high shear.

  • PDF

Determination of Dietary Fiber Contents in Mushrooms (식용버섯 중 식이 섬유소의 함량 측정)

  • 임수빈;김미옥;구성자
    • Korean journal of food and cookery science
    • /
    • v.7 no.3
    • /
    • pp.69-76
    • /
    • 1991
  • Recent epidemiological observations suggested beneficial effects of dietary fiber on man's health. The obsective of this study was to obtain the dietary fiber reference data of mushrooms. The dietary fiber contents of six different mushrooms (Cornellus edodes, Auricularia auriculajudae, Gyrophora esculanta, Agaricus bisporus, Pleurotus ostreatus, Collybia velutipes) were analyzed by Southgate method, modified neutral detergent fiber (NDF) method and Food Research Institute (FRI) method. Duplicate sample were used for each determination. The mean values of total dietary fiber by Southgate method, modified NDF method and FRI method were respectively $20.08\pm1.45g$/100g dry weight, $20.24\pm1.85g$/100g dry weight and $21.5\pm2.70g$/100g dry weight. The mean values of all mushroom samples by FRI method were significantly different from the mean values of the samples by modified NDF method and Southgate method. However, there was no difference in the mean values of the samples between modified NDF method and Southgate method. By Southgate method, total dietary fiber of mushrooms composed of 1.7-3.1% soluble fiber, 47.0-66.6% hemicellulose, 28.4-57.7% cellulose and 0.9-3.3% lignin. By modified NDF method, total dietary fiber of mushrooms composed of 61.8-79.1% hemicellulose, 5.4-32.9% cellulose and 4.5- l5.5% lignin. Therefore, dietary fiber contents of mushrooms were mainly hemicellulose. Our values for total dietary fiber for six mushrooms were 2~4 times higher than crude fiber in textbook.

  • PDF

Properties of Dietary Fiber Extract from Rice Bran and Application in Bread-making (미강에서 추출한 식이섬유추출물의 특성 및 제빵에의 응용)

  • Kim, Young-Soo;Ha, Tae-Youl;Lee, Sang-Hyo;Lee, Hyun-Yu
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.502-508
    • /
    • 1997
  • Rice bran dietary fiber extract, which was obtained after termamyl treatment of defatted rice bran contained $27.3{\sim}30.5%$ protein, $49.7{\sim}54.1%$ insoluble dietary fiber, and $1.9{\sim}2.7%$ soluble dietary fiber. Extrusion decreased the insoluble dietary fiber content but increased the soluble dietary fiber content, while roasting did not. Influence those content. Each mineral element content was depended upon heat processing method. Extrusion increased the water binding capacity and L value, while roasting reduced the water binding capacity and L value. Scanning electron microscopy showed damaged cell walls for extruded sample compared to roasted one which had fully collapsed cell walls. The increase of water absorption, developing time, and stability and the of MTI of wheat flour-dietary fiber extract composites with addition of dietary fiber extract were observed by Farinograph. Rice bran dietary fiber extract had an effect on the bread making resulting in increase of bread weight and color of crumb and crust, and decrease of bread volume and texture. As a result of sensory evaluation, appearance, texture, overall acceptability were significantly different from control but flavor and taste were not different significantly up to 6% level. Heat treated samples had differences in mean values, but not significant differences statistically.

  • PDF

Dyeing of Wool at Low Temperature - focusing on solubility parameter$(\delta)$ - (양모의 저온 염색(1) - 용해도 파라미터$(\delta)$를 중심으로 -)

  • 도성국
    • Textile Coloration and Finishing
    • /
    • v.15 no.6
    • /
    • pp.55-62
    • /
    • 2003
  • Wool fabrics were dyed with the aqueous solution of C. I. Red Acid 114 mixed with methanol dissolving three kinds of barely water soluble ketones, acetophenone, 2-pentanone, and 3-pentanone. The steric hinderance and the orientation of the bigger hydrophobic part of the solvated dye molecules to the fiber slowed down the dying rate, however, loosening the wool molecule, say a little swelling, disaggeregating the dye molecules, and attaining the higher dye concentration on the fiber surface by the added solvents increased the amount of dye on the fabric. The higher concentration or/and the higher dyeing temperature helped loosen fiber molecules and made it easier for the solvated dye molecules to penetrate into the inside of the fiber. Acetophenone, the most influential solvent used, showed that the ability to loosen fiber molecules was the most important of all the three positive solvent actions mentioned above. The considered mechanism provided before reflected the fact that the dye uptake on the fabric dyed with the solvents included, except for 0.034M and 0.051M of acetophenone, was even lower than that without any solvents at $50^\circ{C}$, but all the solvents added to the dye bath increased the dye uptake on the fiber at $70^\circ{C}$.

Functionality and Application of Dietary Fiber in Meat Products

  • Kim, Hyun Jung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.695-705
    • /
    • 2012
  • Dietary fiber naturally present in various sources of cereals, legumes, fruits and vegetables plays a physiological role in human health, such as lowering cholesterol and blood pressure, improving blood glucose control in diabetes, helping with weight loss and management, and reducing cancer risk. In addition, dietary fibers have has been added as a functional food ingredient to food products to provide water-holding capacity, viscosity, gel-forming ability, and fat-binding capacity to food products. These beneficial characteristics of dietary fiber components can improve the image of meat products to be healthy and functional food products. This article reviews the concept and current definition of dietary fibers in food products along with their health benefits and functional characteristics. Dietary fibers from different sources like cereals, legumes, fruits, and vegetables and soluble dietary fibers have been applied as functional ingredients to various types of meat products, such as beef patties, ground beef and pork, pork and chicken sausages, meatballs, and jerky etc. Based on the application of dietary fibers to different types of meat products, possible future characteristics in selecting appropriate dietary fiber ingredients and their proper incorporation are explored to develop and produce healthy and functional meat products with high dietary fiber contents.