• Title/Summary/Keyword: water samples

Search Result 6,022, Processing Time 0.027 seconds

THE EFFECT OF INTERMITTENT COMPOSITE CURING ON MARGINAL ADAPTATION (복합레진의 간헐적 광중합 방법이 변연적합도에 미치는 영향)

  • Yun, Yong-Hwan;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.248-259
    • /
    • 2007
  • The aim of this research was to study the effect of intermittent polymerization on marginal adaptation by comparing the marginal adaptation of intermittently polymerized composite to that of continuously polymerized composite. The materials used for this study were Pyramid (Bisco Inc., Schaumburg, U.S.A.) and Heliomolar (Ivoclar Vivadent, Liechtenstein) . The experiment was carried out in class II MOD cavities prepared in 48 extracted human maxillary premolars. The samples were divided into 4 groups by light curing method: group 1- continuous curing (60s light on with no light off), group 2-intermittent curing (cycles of 3s with 2s light on & 1s light off for 90s); group 3- intermittent curing (cycles of 2s with 1s light on & 1s light off for 120s); group 4- intermittent curing (cycles of 3s with 1s light on & 2s light off for 180s). Consequently the total amount of light energy radiated was same in all the groups. Each specimen went through thermo-mechanical loading (TML) which consisted of mechanical loading (720,000 cycles, 5.0 kg) with a speed of 120 rpm for 100hours and thermocycling (6000 thermocycles of alternating water of $50^{\circ}C$ and $55^{\circ}C$). The continuous margin (CM) (%) of the total margin and regional margins, occlusal enamel (OE), vertical enamel (VE), and cervical enamel (CE) was measured before and after TML under a $\times200$ digital light microscope. Three-way ANOVA and Duncan's Multiple Range Test was performed at 95% level of confidence to test the effect of 3 variables on CM (%) of the total margin: light curing conditions, composite materials and effect of TML. In each group, One-way ANOVA and Duncan's Multiple Range Test was additionally performed to compare CM (%) of regions (OE, VE CE). The results indicated that all the three variables were statistically significant (p < 0.05). Before TML, in groups using Pyramid, groups 3 and 4 showed higher CM (%) than groups 1 and 2, and in groups using Heliomolar. groups 3 and 4 showed higher CM (%) than group 1 (p < 0.05). After TML, in both Pyramid and Heliomo)ar groups, group 3 showed higher CM (%) than group 1 (p < 0.05) CM (%) of the regions are significantly different in each group (p < 0.05). Before TML, no statistical difference was found between groups within the VE and CE region. In the OE region, group 4 of Pyramid showed higher CM (%) than group 2, and groups 2 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). After TML, no statistical difference was found among groups within the VE and CE region. In the OE region, group 3 of Pyramid showed higher CM (%) than groups 1 and 2, and groups 2,3 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). It was concluded that intermittent polymerization may be effective in reducing marginal gap formation.

Development and Validation of the Analytical Method for Oxytetracycline in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 Oxytetracycline의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, ong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • An analytical method was developed for the determination of oxytetracycline in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After the samples were extracted with methanol, the extracts were adjusted to pH 4 by formic acid and sodium chloride was added to remove water. Dispersive solid phase extraction (d-SPE) cleanup was carried out using $MgSO_4$ (anhydrous magnesium sulfate), PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed with LC-MS/MS using ESI (electrospray ionization) in positive ion MRM (multiple reaction monitoring) mode. The matrix-matched calibration curves were constructed using six levels ($0.001{\sim}0.25{\mu}g/mL$) and coefficient of determination ($r^2$) was above 0.99. Recovery results at three concentrations (LOQ, $10{\times}LOQ$, and $50{\times}LOQ$, n=5) were from 80.0 to 108.2% with relative standard deviations (RSDs) less than of 11.4%. For inter-laboratory validation, the average recovery was in the range of 83.5~103.2% and the coefficient of variation (CV) was below 14.1%. All results satisfied the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for oxytetracycline determination in agricultural commodities. This study could be useful for safety management of oxytetracycline residues in agricultural products.