• Title/Summary/Keyword: water resources planning

Search Result 560, Processing Time 0.03 seconds

Comparison and discussion of MODSIM and K-WEAP model considering water supply priority (공급 우선순위를 고려한 MODSIM과 K-WEAP 모형의 비교 및 고찰)

  • Oh, Ji-Hwan;Kim, Yeon-Su;Ryu, Kyong Sik;Jo, Young Sik
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.463-473
    • /
    • 2019
  • This study compared the characteristics of the optimization technique and the water supply and demand forecast using K-WEAP (Korea-Water Evaluation and Planning System) model and MODSIM (Modified SIMYLD) model considering wtaer supply priority. Currently, The national water resources plan applied same priority for municipal, industrial and agricultural demand. the K-WEAP model performs the ratio allocation to satisfy the maximum satisfaction rate, whereas the MODSIM model should be applied to the water supply priority of demands. As a result of applying the priority, water shortage decreased by an average of $1,035,000m^3$ than same prioritized results. It is due to the increase of the return flow rate as the distribution of Municipal and industrial water increases. Comparing the analysis results of K-WEAP and MODSIM applying the priorities, the relative error was within 5.3% and the coefficient of determination ($R^2$) was 0.9999. In addition, if both models provide reasonable water balance analysis results, K-WEAP is superior to GUI convenience for model construction and data processing. However, MODSIM is more effective in simulation time efficiency. It is expected that it will be able to carry out analysis according to various scenarios using the model.

Development of dam inflow simulation technique coupled with rainfall simulation and rainfall-runoff model (강우모의기법과 강우-유출 모형을 연계한 댐 유입량 자료 생성기법 개발)

  • Kim, Tae-Jeong;So, Byung-Jin;Ryou, Min-Suk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.315-325
    • /
    • 2016
  • Generally, a natural river discharge is highly regulated by the hydraulic structures, and the regulated flow is substantially different from natural inflow characteristics for the use of water resources planning. The natural inflow data are necessarily required for hydrologic analysis and water resources planning. This study aimed to develop an integrated model for more reliable simulation of daily dam inflow. First, a piecewise Kernel-Pareto distribution was used for rainfall simulation model, which can more effectively reproduce the low order moments (e.g. mean and median) as well as the extremes. Second, a Bayesian Markov Chain Monte Carlo scheme was applied for the SAC-SMA rainfall-runoff model that is able to quantitatively assess uncertainties associated with model parameters. It was confirmed that the proposed modeling scheme is capable of reproducing the underlying statistical properties of discharge, and can be further used to provide a set of plausible scenarios for water budget analysis in water resources planning.

Analysis of Problems of Water Supply Capacity Determination in Water Resources Systems (수자원시스템의 용수공급량 결정방법의 문제점 분석)

  • Lee, Gwang-Man;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.331-342
    • /
    • 2014
  • In water resources planning, to decide proper water supply capacity is a very important task. Once water supply system such as a dam is decided, it will affect whole range of water resources circumstances for a long time. Even though systematic approaches have been implemented since 1980, many problems are still prevail in reality. Especially some issues related to the reliability analysis method used in planning dams in Korea have been persistently brought up. This study is to diagnose problems on the reliability criterion in water supply capacity assessment of water resources systems and discuss a valid method. As a result, the estimates by the different analysis time intervals, in case of the temporal reliability, show no large difference, but there is a large difference when assessment time intervals are differently applied. The volumetric reliability accounts for 2~3% higher than that of the temporal reliability, and resiliency and vulnerability also show large differences by the analysis time intervals.

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

A Spread Sheet Model for a Long Range Water Supply Planning (장기 용수 공급계획 수립을 위한 스프레드 쉬트 모델)

  • 김승권
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.479-489
    • /
    • 1992
  • A mathematical model for a long range water supply planning is develoted as a dynamic capacitated facility location problem, in which operation costs and two types of fixed costs are considered. The fixed costs are for water supply systems such as dams and reservoirs and for water conveyance systems of waterways or conduits from each water supply points. A Spreadsheet model is developed to support the efficiency of user interface and to implement a heuristic solution procedure. The proposed solution procedure utilizes SOLVER tool and it has been applied to a system with fictitious data but with reality and applicability in mind. As a result of the mathematical analysis, not only the most economic construction timings of surface water supply facilities and distribution systems but also the most economical water supply operating patterns are identified.

  • PDF

A Study on the Application of the Technology Tree for Water Hazard Information Platform (수재해 정보 플랫폼을 위한 기술트리 활용 방안 연구)

  • Kim, Dong-Young;Lee, Jeong-Ju;Chae, Hyo-Sok;Hwang, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.200-214
    • /
    • 2014
  • Technology planning is becoming increasingly important with the rapid development and decline of technology. Technology roadmapping is a tool used to select whether the specific technique of technology planning should pursue which technology and in which time. This technology is important to secure the uncertain future since it will provide a method that is able to share the goals and strategies between organizations. Therefore, technology tree in the planning stage of the problem would be a very useful tool. In this study, both domestic and international technology tree application cases were analyzed to be able to derive a plan for ensuring that the research performed and the requirements are met for the future development and implementation of a convergence portal system. The six major systems that aim at water hazard information platform are basic information providing system, analysis information providing system, water disaster theme providing system, national disaster information system, water disaster augmented reality system and open information platform system. General standardized core technologies corresponding to the needed functions in each target system are derived through brainstorming, and classified according to the technology field to derive the technology tree.

The Evaluation of Integrated Agricultural Resource Management Policy through Water-Energy-Food Nexus - An Application to Management of Aquifer Recharge Project - (물-에너지-식량 넥서스를 활용한 통합적 농업자원관리정책 평가 - 지하수 함양 사업을 중심으로 -)

  • Sung, Jae-hoon;Lee, Hyun-jung;Cho, Wonjoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.35-45
    • /
    • 2019
  • Korean agriculture experienced rapid changes in its production structure to respond fluctuations on external conditions, and these changes have increased the dependence between agricultural resources and negative environmental externalities from agricultural production. As a tool for managing agricultural resources and reducing negative environmental effects from agricultural production, this study employs water-energy-food nexus for integrated resource management. To show the necessity of an integrated approach, this study evaluated three policy scenarios including changes in capital interest, water capacity, and energy cost. The results show that three scenarios have unintended consequences for farmers' incomes and their use of resources. Also the unintended consequences of government policies also affected farms' vulnerability to environmental changes. In particular, the expansion of financing for the establishment of non-circulating water curtain facilities did not have a significant effect on the crop switching of farms. In addition, increasing the amount of available water through the aquifer recharge project leads to the installation of non-circulating water curtain facilities in zucchini farm. It raises dependence on groundwater in agricultural production, thereby increasing farmers' vulnerability to groundwater shortages. These results imply that the agricultural sector needs to consider the interrelationship between agricultural resources when designing or evaluating policies.

The status quo and developing measurement of water reuse in China

  • Li, Wei;Li, Jing;Wang, Yiwen;Zhong, Yuxiu;Liu, Hongxian;Li, Peilei
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.228-228
    • /
    • 2015
  • Water reuse plays significant role in water saving and water environmental protection, and it helps alleviate the shortage of water resources. China's water reuse was put into practice since 1980s by means of pilot and promotion in National Fifth-year Plan and other strategies. The effects of water reuse is beneficial in both economic, social and environmental aspects. But some shortcomings still undermine future development of water reuse in China. To overcome and boost water reuse, Ministry of Water Resources conducted a successive survey across China. The aim of this study is to demonstrate the current condition of water reuse in China in construction, funds, legislation, planning, policy aspects, to summarize problems and its reasons underneath, to make suggestions for further development. Basically, in 2010, China's water reuse is 2.83 billion cubic meters and the utilization rate is 10.35%. Water reuse in China has four major characteristics: the first one is water reuse differences in amount occur national-widely and North of China has the main percentage as 47.3%; the second one is water reuse is mainly in environment maintenance (42.1%) and industry cooling (29.8%); the third one is funds for water reuse station and pipe construction is main in non-fiscal budget which take percentage as 56.8%; the fourth one is progresses of administrative system, political system, price management, standard system and technologies go rapidly recently. The problems of water reuse such as lack in water reuse station, delay in pipe constriction and limits on water reuse amount still exist due to some reasons. As a think tank of Ministry of Water Resources, we give some suggestions: firstly, water reuse needs to be integrated with traditional water resources allocation; secondly, public budgets need to be strengthened and income mechanism should also be constructed; thirdly, water resources integrated administrative of city and county should be boosted and roles as water reuse need to be clear and precise; fourthly, national, provincial and regional water reuse planning should be made in time; fifthly, regulations on water reuse should be programmed as soon as possible.

  • PDF

Derivation of design and planning parameters for permeable pavement using Water Management Analysis Module (Water Management Analysis Module 모형을 이용한 투수성포장시설의 설계 및 계획 매개변수 도출)

  • Song, Jae Yeol;Chung, Eun-Sung;Song, Young Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.491-501
    • /
    • 2018
  • This study presents a systematic framework to derive the best values of design and planning parameters for low impact development (LID) practices. LID was developed to rehabilitate the distorted hydrological cycle due to the rapid urbanization. This study uses Water Management Analysis Module (WMAM) to perform sensitivity analysis and multiple scenario analysis for LID design and planning parameters of Storm Water Management Model (SWMM). This procedure was applied to an urban watershed which have experienced rapid urbanization in recent years. As a result, the design and planning scenario derived by WMAM shows lower total flows and peak flow, and larger infiltration than arbitrary scenarios for LID design and planning parameters. In the future, economic analysis can be added for this application in the field.

Establishment of Landfill Site Preliminary Assessment Model Based on Contamination Characteristics of Water Resources (수자원(水資源) 오염 특성에 의한 불량매립지(不良埋立地) 예비평가모형(豫備評價模型) 정립)

  • Hong, Sang-Pyo;Kim, Jung-Wuk
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 1995
  • To assess preliminarily the contamination potential of water resources including groundwater owing to the hydrogeological characteristics of landfill site and the potential impact to humans and animals through contamination of water resources by leachate, "Landfill Site Preliminary Assessment Model(LASPAS)" was contrived. LASPAS could help them proritization of remediation of landfil sites by the convenient and relatively simple evaluation method of landfill site features. LASPAS was designd to aliot numerical ratings to landfill site related factors undermentioned; 1) hydrogeological factors such as hydraulic conductivity of aquifer, thickness of confining layer over aquifer, topographical slope, net recharge, and subsurface containment 2) water resources contamination factors of impacts on receptors such as proximity to drinking water supply, substitutability of drinking water supply, type of use of water resources, known impact on drinking water supply, and flood potential.

  • PDF