• 제목/요약/키워드: water reservoir

검색결과 2,472건 처리시간 0.031초

파키스탄 파트린드댐의 저수지 퇴사관리를 위한 배사효과 분석 (Analysis of Sediment Flushing Effect for Reservoir Sedimentation Management of the Patrind Dam in Pakistan)

  • 노준우;박진혁;허영택;김상호
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.799-807
    • /
    • 2013
  • Reservoir sedimentation is one of the major concerns for sustainable reservoir operation. Since sediment concentration of the rivers in the Himalayan Mountain is very high, a proper sediment management scheme is necessary. This paper presents long-term reservoir sedimentation and sediment flushing based on the gate operation. Focused on the reservoir to be constructed for the Patrind hydropower project in Pakistan, 4 different flushing scenarios were proposed in this study to prevent successive sedimentation. By extending flushing period and by increasing the flushing discharge for 2 times, the flushing rate increases up to 53.2% and 43.6% in proportion to flushing period and discharge, respectively. Based on the simulation presented in this paper, it is expected to establish efficient sediment management plan to increase hydro power generation and sediment flushing simultaneously.

실시간 저수지 탁수 감시 및 예측 모의 (A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir)

  • 정세웅;고익환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

저수지를 포함한 도시하천의 저서성 대형무척추동물 군집구조 (Community Structure of Benthic Macroinvertebrates in an Urban Stream with a Reservoir)

  • 김필재;김진영;공동수
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.825-831
    • /
    • 2013
  • The Suwon stream which consists of a mountainous reach, an artificial reservoir and an urban reach provides benthic macroinvertebrates with various habitats. This study was conducted to find out the influence of reservoir sluice control and water quality on benthic macroinvertebrates community in the Suwon stream from June to August, 2011. As a result, substrate composition showed little difference between the upper site (S2) and the lower site of the reservoir (S3). At site S3, water velocity was fastest, and water temperature was lowest due to the intermediate depth discharge of the reservoir. Cheumatopsyche brevilineata which prefer fast water velocity was dominant at site S3. Some biotic indices (H', J, and R) of site S3 decreased significantly whereas Benthic Macroinvertebrate Index (BMI) showed little difference between site S2 and site S3. EPT showed a negative correlation with water temperature. The sluice control of the reservoir leaded variations of water velocity and temperature, and seemed to make the state of aquatic ecosystem worse.

Analysis and Estimation of Reservoir Sedimentation Using Remote Sensing and GIS

  • Sungmin Cho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권4호
    • /
    • pp.199-204
    • /
    • 2023
  • Periodic assessment of reservoir capacity is essential for better water resources management and planning for the future water use. Reservoirs and water storage structures raised on the rivers are subjected to sedimentation and he sedimentation is caused by deposition of eroded sediment particles carried by the streams. Knowledge of reservoir sedimentation is important to estimate avaliable storage capacity for optimum reservoir operation and scheduling water release. In recent years, remote sensing and GIS techniques have emerged as an important tool in carrying out reservoir capacity analysis and water management. The reduction in storage capacity as compared to the original capacity at the time of reservoir impounding is indicative of sediment deposition. In this study, the application of GIS and remote sensing techniques were applied to assess the sediment deposition, losses in the reservoir storage and the revised cumulative capacity. Satellite images covering Pyodongdong reservoir were analyzed using Erdas Imagine and ArcGIS softwares.Cumulative capacities at different levels were also calculated and we estimated that the revised live storage was 84.2Mft3 in 2021 and 64.3Mft3 in 2022 while the original capacity was 22.8 and 53.6Mft3 in 2021 and 2022.

1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의 (Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model)

  • 노준우;김상호;신재기
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.

농업용 둑높임저수지의 다중 용수공급을 위한 이수운영기준곡선 개발 (Development of Operating Rule Curve for Multipurpose Water Supply in Heightened Agricultural Reservoir)

  • 박종윤;정인균;이광야;김성준
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1389-1400
    • /
    • 2013
  • 본 연구에서는 농업용 둑높임저수지의 다중용수공급능력(관개 및 하천유지용수) 평가에 따른 이수운영기준곡선을 개발하였다. 20개 둑높이기 사업지구를 대상으로 특성분석에 따른 4개(웅양, 궁촌, 용암, 운암)의 대표 저수지를 선정하고, 이수운영모형을 이용한 물수지분석을 통해 하천유지용수 공급 가능량을 산정하였다. 이수운영기준은 관개기와 비관개기에 대해 방류제한수위(사업전 만수위)에서 상시만수위까지의 저수위구간을 하천유지용수공급 가능 수위로 설정하고 신뢰도, 회복도 및 취약도 지수를 이용하여 각 둑높임저수지 특성별 물공급 능력을 평가하였다. 이수운영기준 적용에 따른 둑높임저수지의 이수운영기준곡선은 과거 이수운영모의결과로부터 일별 저수위를 백분위(Percentile Rank)로 표현하였다. 각 분위별 저수위 구간을 3개의 완충구간(Buffer)으로 나누어 갈수년(5~25%), 평수년(25~75%) 및 풍수년(75~95%)에 해당하는 저수지 운영이 가능하도록 하였다.

다목적댐의 가뭄 대비 용수공급 조정기준과 혼합 정수계획법에 의한 용수 감량 공급 기준의 비교 및 분석 (Analysis and comparison of the water supply adjustment guide and a hedging rule of reservoir operation derived from mixed-integer programming for water supply operation of a multi-purpose reservoir)

  • 진영규;정택문;이상호
    • 한국수자원학회논문집
    • /
    • 제54권6호
    • /
    • pp.443-452
    • /
    • 2021
  • 혼합정수 계획의 최적화 기법으로 유도한 '용수 감량 공급 기준'은 용수를 미리 감량 공급함으로써 가뭄 기간에 상대적으로 많은 물을 확보하여 저수지를 운영하는 기준이다. 우리나라의 다목적 저수지 운영에 적용하고 있는 현행 기준은 모의 운영 기법으로 유도된 '용수공급 조정기준'이다. 2003-2018년 기간의 저수지 유입량을 입력 자료로 하여, 합천 다목적댐 저수지의 모의 운영에 두 방법을 적용한 결과, 두 방법 모두 2015년부터 2018년까지 지속된 가뭄에 장기간 물 공급 부족이 발생하였다. 특히 2017년 하반기에 물을 전혀 공급하지 못하거나 간헐적으로 공급하는 기간이 지속해서 나타났다. 용수공급 조정기준은 '정상 용수공급 환원 기준 저수량'을 둠으로써, 2017년 7월에 용수공급 불가 상태에 이른 다음, 저수량이 정상 용수공급 환원 기준 저수량 보다 커지는 2018년 1월까지 용수공급을 중단하는 결과를 낳았다. 저수지에 물이 유입되어 저수량이 증가하는 상태에도 불구하고 물 공급을 중단하는 결과는 실행 상 개선이 필요하다. 현행 용수공급 조정기준과 용수 감량 공급 기준 모두 가뭄 단계별 용수의 감축 공급 개념을 과학적 수치로 나타낸 저수지 운영 기준으로서 유용하고 현실적이다. 그렇지만 위와 같이 몇 개월간 물을 전혀 공급하지 못하거나 간헐적으로 공급하는 저수지 모의 운영 결과를 개선하기 위하여, 현재 적용 중인 가뭄 단계별 물의 공급 축소량을 증가시킬 필요가 있다.

저수지 장기운영을 위한 퇴적토사의 효율적 관리(1) - 저수지 퇴사량 산정 (An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (1) - Reservoir Sediment Estimation)

  • 안재현;장수형;최원석;윤용남
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1088-1093
    • /
    • 2006
  • In this study, the method of annual sediment estimation for reservoir long-term operation is proposed. Long-term daily precipitation and evaporation are predicted by Markov Chain. Using these values, reservoir inflow is simulated by NWS-PC model. Reservoir sediment load is estimated by sediment rating relation curve which is observed. From the simulation results, it was found that each simulated value by Markov Chain and NWS-PC was well compared to the observed ones and also estimated reservoir sediment was appropriate to the compared values using empirical equations. It is thought that the proposed method for estimation of reservoir sediment can be useful used to operate the reservoir.

저수지 가뭄지수를 활용한 농업가뭄 위험도 평가 (Agricultural Drought Risk Assessment using Reservoir Drought Index)

  • 남원호;최진용;장민원;홍은미
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.41-49
    • /
    • 2013
  • Drought risk assessment is usually performed qualitatively and quantitatively depending on the definition a drought. The meteorological drought indices have a limit of not being able to consider the hydrological components such as evapotranspiration, soil moisture and runoff, because it does not consider the water demand in paddies and water supply in reservoirs. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The objectives of this study were to suggest improved agricultural drought risk assessment in order to evaluate of regional drought vulnerability and severity studied by using Reservoir Drought Index (RDI). The RDI is designed to simulate daily water balance between available water from agricultural reservoir and water requirement in paddies and is calculated with a frequency analysis of monthly water deficit based on water demand and water supply condition. The results indicated that RDI can be used to assess regional drought risk in agricultural perspective by comparing with the historical records of drought in 2012. It can be concluded that the RDI obtained good performance to reflect the historical drought events for both spatially and temporally. In addition, RDI is expected to contribute to determine the exact situation on the current drought condition for evaluating regional drought risk and to assist the effective drought-related decision making.

농업용 저수지와 토지이용변화가 유역 물순환에 미치는 영향 평가 (Impact Assessment of Agricultural Reservoir and Landuse Changes on Water Circulation in Watershed)

  • 김석현;송정헌;황순호;강문성
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.1-10
    • /
    • 2021
  • Agricultural reservoirs have a great influence on the water circulation in the watershed. It is necessary to evaluate the impact on water circulation by the agricultural reservoir. Therefore, in this study, we simulated the agricultural watershed through linkage of Hydrological Simulation Program Fortran (HSPF) and Module-based hydrologic Analysis for Agricultural watershed (MASA) and evaluated the contribution of the agricultural reservoir to water circulation by watershed water circulation index. As a result of simulating the Idong reservoir watershed through the HSPF-MASA linkage model, the model performance during the validation period was R2 0.74 upstream, 0.78 downstream, and 0.76 reservoir water level, respectively. To evaluate the contribution of agricultural reservoirs, three scenarios (baseline, present state, and present state without reservoir) were simulated, and the water balance differences for each scenario were analyzed. In the evaluation through the agricultural water circulation rate in the watershed, it was found that the water circulation rate increased by 1.1%, and the direct flow rate decreased by 13.6 mm due to the agricultural reservoir. In the evaluation through the Budyko curve, the evaporation index increased by 0.01. Agricultural reservoirs reduce direct runoff and increase evapotranspiration, which has a positive effect on the water circulation.