• 제목/요약/키워드: water reducing ratio

검색결과 335건 처리시간 0.024초

환경친화적 조세개편을 위한 용수부문 정부보조금 규모 분석 (Estimation of Environmentally-Unfriendly Government Subsidies in the Water Sector for Green Tax Reform)

  • 민동기;노상환
    • 자원ㆍ환경경제연구
    • /
    • 제10권2호
    • /
    • pp.235-257
    • /
    • 2001
  • As in other Asian countries, the Korean government provides direct subsidies to endeavors that are potentially harmful to the environment. The water sector is one of the main recipients of these subsidies. The total amount of estimated direct fiscal subsidies equals 2.200 trillion won; however, the comprehensive cost of the subsidies is estimated to be much greater because environmental and social costs were not considered in the initial calculation. Most of the fiscal direct subsidies in the water sector are subsidized to urban water areas. The percentage of fiscal direct subsidies in the urban water sector to the total fiscal direct subsidies is 79.68%, while the percentage of fiscal direct subsidies in the industrial water sector is only 4.92%. Since the ratio of fiscal direct subsidies in the industrial water sector is quite small, the negative impact of removing fiscal direct subsidies for the industrial sector may be trivial. If the Korean government cuts dowm the VAT or income tax rate while reducing several types of subsidies, it will be able to achieve a double dividend effect both on the economy and the environment.

  • PDF

표면부유 공기양극 미생물연료전지에서 유량 및 전극 면적비에 따른 전력생산 특성 (Electricity generation from surface floating air cathode microbial fuel cell according to the wastewater flow-rate and the ratio of cathode surface area to anode surface area)

  • 유규선;송영채;우정희;정재우;이채영
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.591-596
    • /
    • 2011
  • Surface floating air cathode microbial fuel cell (MFC) having horizontal flow was developed for the application of MFC technology. RVC (Reticulated vitreous carbon) coated with anyline was used as anode electrode and carbon cloth coated with Pt (5.0 g Pt/$m^2$, GDE LT250EW, E-TEK) was used as cathode electrode. As results of continuous operation with changing the flow rate from 4.3 mL/min to 9.5 mL/min, maximum power density of 4.5 W/$m^3$ was acquired at 5.4 mL/min, which was at 0.35 m/hr of flow velocity under anode electrode. When the ratio of cathode surface area to anode surface area($A_c/A_a$) was changed to 1.0, 0.5, and 0.25, the maximum power density of 2.7 W/$m^3$ was shown at the ratio of 1.0. As the ratio decreased from 1.0 to 0.25, the power density also decreased, which is caused by increasing the internal resistance resulted from reducing the surface area to contact with oxygen. Actually, internal resistances of the ratio of 1.0, 0.5, and 0.25 were 63.75${\Omega}$, 142.18${\Omega}$, and 206.12${\Omega}$, respectively.

혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도 (Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions)

  • 조영국;정선호;장덕배
    • 한국건축시공학회지
    • /
    • 제11권6호
    • /
    • pp.587-596
    • /
    • 2011
  • 폴리머 시멘트 모르타르를 긴급공사의 보수 보강 재료로 사용할 때, 초속경시멘트와 혼입하여 사용함으로써 시멘트의 빠른 응결과 시멘트 매트릭스 내부에서 형성된 폴리머 필름의 작용이 물리적 성질과 내구성을 개선시킬 수 있다. 또한 각종 혼화재료를 혼입함으로써 매트릭스 내부 공극을 충전하여 성질을 개선시킬 수 있는데, 양생방법이 큰 영향을 미칠 수 있다. 본 연구에서는 속경성 SBR 시멘트 모르타르의 압축강도와 휨강도에 영향을 미칠 수 있는 혼화재료와 양생조건에 관하여 실험을 실시하여 그 영향성을 평가하고자 하였다. 본 연구결과, 초속경시멘트 모르타르에 SBR을 혼입함으로써 휨강도와 압축강도가 크게 개선되었으며, 여기에 메타카올린을 혼입함으로써 보다 더 강도를 증진시킬 수 있었다. 또한 양생방법에 있어서도 SBR을 사용한 경우에는 표준양생에서, SBR을 사용하지 않은 경우에는 수중양생에서 강도발현이 크게 나타났다.

가루녹차를 첨가한 설기떡의 관능적 품질특성 (Quality Characteristics of Seolgiddeok added with Green Tea Powder)

  • 홍희진;최정화;양정아;김귀영;이순재
    • 한국식품조리과학회지
    • /
    • 제15권3호
    • /
    • pp.224-230
    • /
    • 1999
  • The purpose of this study was to find out the optimal mixing ratio of green tea powder, sugar, and water for the preparation of Seolgiddeok through Response Surface Methodology based on the color, sensory, and texture test. The oganoleptic and textural properties of Seolgiddeok prepared with various concentrations of green tea powder (0% (control group), 0.5% (GT-0.5 group), 1% (GT-1.0 group), 1.5% (GT-1.5 group), 2% (GT-2.0 group)), and their quality changes during storage were also investigated. The optimal mixing ratio of green tea powder, sugar, and water for preparing the best quality Seolgiddeok was 1.0%, 12%, and 22%, respectively. The proximate composition of green tea powder was 21.70% of crude protein, 8.49% of crude lipid, 2.95% of reducing sugar, and 6.40% of ash. The contents of crude lipid, reducing sugar, and catechins in Seolgiddeok added with a green tea powder were increased with increasing the content of green tea powder. The hardness and gumminess of GT-1.0 group were the lowest among four groups, whereas GT-1.0 and GT-2.0 groups had the lowest cohesiveness. While the control group was the lowest in adhesiveness, the springness was not significantly different among all groups. GT-0.5 and GT-1.5 groups were the highest in sweet taste and colorfulness, respectively. However, GT-1.0 group had the best overall quality. Total microbial numbers, the acidity and pH in Seolgiddeok during storage were decreased with increasing green tea powder content, and especially those of GT-1.0 and GT-1.5 groups were relatively the lower than others. The “L” value (lightness) of the control group (no additives) was the highest among five groups, and the value was decreased with storage period, and especially GT-0.5 groups had the lowest brightness. The“a”value (reddness) of the control group was the highest, followed by GT-0.5, GT-1.0, GT-1.5, and GT- 2.0 group in order. The“b”value (yellowness) was increased with the increase of green tea powder content. Above results indicated that GT-1.0 group showed the best quality of Seolgiddeok through organoleptic and rheology tests.

  • PDF

팽창재와 수축저감제를 사용한 고성능 콘크리트의 수축 특성 (Shrinkage Properties of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent)

  • 고경택;박정준;류금성;강수태
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.787-794
    • /
    • 2006
  • 고성능 콘크리트는 물-결합재비를 작게 하고, 단위결합재량을 다량으로 사용하므로 콘크리트의 수화열 및 자기수축이 증대되는 경향이 있다. 본 연구에서는 고성능 콘크리트의 수축저감 기술을 구축하는 연구의 일환으로 팽창재와 수축저감제 사용이 고성능 콘크리트의 수축특성에 미치는 영향을 검토하였다. 그 결과, 팽창쟁와 수축저감제는 고성능 콘크리트의 수축을 저감시키는 데 효과가 뛰어나며, 특히 팽창재와 수축저감제를 조합하여 사용할 경우, 각각 단독으로 사용하는 경우보다는 수축 저감 효과가 큰 것으로 확인되었다. 또한 시공성, 강도 및 수축특성을 종합적으로 고려하여 팽창재 5.0%와 수축저감제 1.0%의 조합이 적정배합으로 분석되었다.

공동주택단지에 설치된 부스터펌프 급수설비계통의 유동 특성 (Flow Characteristics of a Water Supply System with Booster Pumps for an Apartment Complex)

  • 오양균;정재봉;박미라;차동진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.151-156
    • /
    • 2008
  • Water flow characteristics of an apartment complex consisting of 12 buildings and 635 units in total have been investigated numerically. The complex incorporates two zone booster pump water supply system, and some units have pressure reducing valves in them. Input data to a commercial code Flowmaster7 include survey results on the water usage for the last three years, dimension of the water supply system and its operation condition, etc. Calculated static pressures at the inlet of all units are compared with their design and measured counterparts, and they agree quite well with each other. Then, the pressure distributions and volumetric flow rates at all 635 units are estimated. Flow balancing is also attempted by varying the ratio of angle valve of each unit to improve the non-uniformity of flows.

  • PDF

생애주기를 고려한 오피스 건물의 리모델링과 그린리모델링의 경제성 평가 연구 : 서울시 강남업무지구의 임대오피스 사례 (An Economic Evaluation Study of Office Remodeling and Green-remodeling Projects : A Simulation Approach to a Rental Office in GBD, Seoul)

  • 이성호;이재수
    • 대한건축학회논문집:계획계
    • /
    • 제34권3호
    • /
    • pp.23-34
    • /
    • 2018
  • Due to a waste of energy in korea, about 525,000 which are 75 percent of total buildings are at least 15 years old buildings that need remodeling. There are two current remodeling systems. One is a remodeling system to reduce a waste of resources from the reconstruction. The other is a green-remodeling system aimed to energy savings and reducing environmental costs. This study is to analyze quantitatively these current systems with respect to the cost-benefit caused by the life cycle and suggests the political and institutional implications through the interpretation of the results. For a quantitative analysis, we analyzed reducing maintenance costs and rent benefits with simulation by using opportunity costs, construction costs, plan costs and supervision costs as expense variables and using the reduced floor area ratio, institutional incentives, energy, water resources and certified emission reduction(CER) as benefit variables. As a result of the empirical study, the green-modeling was more beneficial in the field of environment such as the energy savings, however, the final benefits of remodeling which has no green building certification costs but more floor area ratio incentives were more economical. The green-remodeling system focused on reducing environmental costs and energy savings needs a equatable institutional incentive system.

화학 혼화제의 감수 성능에 따른 2성분계 콘크리트의 품질특성 및 압축강도 추정식에 관한 기초적 연구 (The Fundamental Study on Quality Properties of Binary Blended Concrete according to Water Reducing Performance of Chemical Admixture and Estimation Equation of Compressive Strength)

  • 김경환;오성록;최병걸;최연왕
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.9-17
    • /
    • 2016
  • 본 연구에서는 화학 혼화제 성능에 따른 2성분계 콘크리트의 품질특성을 평가하기 위하여 화학 혼화제의 감수 성능 3수준(0%, 8% 및 16%) 및 물-시멘트비 3수준(40%, 45% 및 50%)에 따른 플라이애시 및 고로슬래그 미분말을 사용한 2성분계 콘크리트 배합을 제조하였다. 신뢰성 확보를 위하여 콘크리트 배합은 3회 반복실험을 실시하였다. 실험결과, 화학 혼화제 성능에 따른 압축강도는 약 20% 이상의 압축강도 차이가 발생하였으며, 화학 혼화제의 성능이 콘크리트 품질에 큰 영향을 미치는 것으로 나타났다. 또한 화학 혼화제의 성능의 영향을 반영한 압축강도 예측 모델식을 도출하였으며, 85% 이상의 높은 상관성이 있는 것으로 나타났다.

Quantification of Karanjin, Tannin and Trypsin Inhibitors in Raw and Detoxified Expeller and Solvent Extracted Karanj (Pongamia glabra) Cake

  • Panda, A.K.;Sastry, V.R.B.;Kumar, A.;Saha, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권12호
    • /
    • pp.1776-1783
    • /
    • 2006
  • Despite being a rich source of protein (28-34%), karanj (Pongamia glabra) cake is found to be bitter in taste and toxic in nature owing to the presence of flavonoid (karanjin), tannin and trypsin inhibitor, thereby restricting its safe inclusion in poultry rations. Feeding of karanj cake at higher levels (>10%) adversely affected the growth performance of poultry due to the presence of these toxic factors. Therefore, efforts were made to detoxify karanj cake by various physico-chemical methods such as dry heat, water washing, pressure cooking, alkali and acid treatments and microbiological treatment with Sacchraromyces cerevisiae (strain S-49). The level of residual karanjin in raw and variously processed cake was quantified by high performance liquid chromatography and tannin and trypsin inhibitor was quantified by titrametric and colorimetric methods, respectively. The karanjin, tannin and trypsin inhibitor levels in such solvent and expeller pressed karanj cake were 0.132, 3.766 and 6.550 and 0.324, 3.172 and 8.513%, respectively. Pressure-cooking of solvent extracted karanj cake (SKC) substantially reduced the karanjin content at a cake:water ratio of 1:0.5 with 30-minute cooking. Among chemical methods, 1.5% (w/w) NaOH was very effective in reducing the karanjin content. $Ca(OH)_2$ treatment was also equally effective in karanjin reduction, but at a higher concentration of 3.0% (w/w). A similar trend was noticed with respect to treatment of expeller pressed karanj cake (EKC). Pressure cooking of EKC was effective in reducing the karanjin level of the cake. Among chemical methods alkali treatment [2% (w/w) NaOH] substantially reduced the karanjin levels of the cake. Other methods such as water washing, dry heat, HCl, glacial acetic acid, urea-ammoniation, combined acid and alkali, and microbiological treatments marginally reduced the karanjin concentration of SKC and EKC. Treatment of both SKC and EKC with 1.5% and 2.0% NaOH (w/w) was the most effective method in reducing the tannin content. Among the various methods of detoxification, dry heat, pressure cooking and microbiological treatment with Saccharomyces cerevisiae were substantially effective in reducing the trypsin inhibitor activity in both SKC and EKC. Based on reduction in karanjin, in addition to tannin and trypsin inhibitor activity, detoxification of SKC with either 1.5% NaOH or 3% $Ca(OH)_2$, w/w) and with 2% NaOH were more effective. Despite the effectiveness of pressure cooking in reducing the karanjin content, it could not be recommended for detoxification because of the practical difficulties in adopting the technology as well as for economic considerations.

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).