Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.957-961
/
2010
Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data. For empirical study, data of two years at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.6
/
pp.527-534
/
2017
The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.
In-situ water quality sampling is used for accurate water quality assessment. However, in-situ water quality sampling offers limited samples and requires much time and intensive labors. Remote sensing approach has recently applied for water quality assessment. It has shown the advantage of offering a synoptic view but also more efficient and economical. In this study, we utilized Landsat Imagery to estimate the water quality of the Tamsui River basin, considered as one of the most important rivers located in the north of Taiwan. In order to monitor water quality of Tamsui River basin, a linear regression relation between the value of spectral radiance and four water quality parameters are investigated with 38 water sampling stations. Through the regression model, we could estimate river pollution index (RPI) from the predicted value of four water quality parameters. By using RPI, we can examine the pollution level of Tamsui River. The accuracy of RPI conversion of this study ranged from 32.2% to 68.2%.
For effective water quality management, it is necessary to secure reliable water quality information. There are many variables that need to be included in a comprehensive practical monitoring network : representative sampling locations, suitable sampling frequencies, water quality variable selection, and budgetary and logistical constraints are examples, especially sampling location is considered to be the most important issues. Until now, monitoring network design for water quality management was set according to the qualitative judgments, which is a problem of representativeness. In this paper, we propose network design system for optimal water quality monitoring using the scientific statistical techniques. Network design system is made based on the SAS program of version 9.2 and configured with simple input system and user friendly outputs considering the convenience of users. It applies to Excel data format for ease to use and all data of sampling location is distinguished to sheet base. In this system, time plots, dendrogram, and scatter plots are shown as follows: Time plots of water quality variables are graphed for identifying variables to classify sampling locations significantly. Similarities of sampling locations are calculated using euclidean distances of principal component variables and dimension coordinate of multidimensional scaling method are calculated and dendrogram by clustering analysis is represented and used for users to choose an appropriate number of clusters. Scatter plots of principle component variables are shown for clustering information with sampling locations and representative location.
The weakness of current water quality monitoring system was reviewed to manage Nakdong river's water quality. The current monitoring system has sampling periods lasting for a week to 10 days, but these-SAMpling periods may not accurately measure the real level of water quality. Therefore, daily sampling and analysis of water samples for nine factors was performed from May 1st 2011 to Sep. 30st 2011 to check the water quality changes at three-SAMpling points, Munsanri (the upper side of Kangjung-Koryung weir), Kangchang (the outlet of the Kumho River) and Samunjin (the lower side of Kangjung-Koryung weir). As demonstrated by the results, concentrations of all nine factors dramatically changed on a daily basis, so daily sampling and analysis of water quality samples may be needed instead of weekly sampling and analysis of water quality samples to ensure the proper management of the Nakdong River's water quality. However, daily observations for all water sampling points are not possible because costs and labors are limited, so that new methods which could support the current monitoring system should be developed.
Kyoung, Min Soo;Kim, Sang Dan;Kim, Hung Soo;Park, Seok Keun
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.3B
/
pp.291-300
/
2006
In this study a statistical water quality monitoring network design of Kyung-An stream is proposed. Water quality data for the design is obtained by QUAL2E model simulation. The observed monthly average water quality data from March to November in Kyung-An stream has been applied to this study. HEC-RAS model is also used for QUAL2E hydrauric parameter estimation. Before QUAL2E water quality parameter estimation, FORA is performed to reduce the number of parameters to be estimated, and then water quality parameters are calibrated with a observed monthly average data. Using these simulated water quality data, the number of gage station and its location are estimated by kriging theory and branch & boundary method. Such a network design is based on two case; average flow and low flow case, respectively. Next, proportional sampling method is applied to estimate the sampling frequency.
Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
Journal of Korean Society on Water Environment
/
v.28
no.1
/
pp.84-93
/
2012
The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.
Kim Baik-Ho;Choi Hwan-Seok;Kim Mi-Yeon;Yoo Hyung-Bin
Journal of environmental and Sanitary engineering
/
v.19
no.2
/
pp.45-50
/
2004
To investigate the epilithic diatom community and water quality of the Osan stream, water samples were collected from the eight stations from April to September 2003. Sampling was two times before and after heavy rain. Total 52 diatom were identified and divided into 12 saproxenosus taxa, 6 saprophilous taxa and 34 indifferent taxa, respectively. The DAIpo values higher after heavy rain than before that. According to tolerance degree to the organic water pollution, all sampling stations ranged from $\alpha$-oligosaprobic to $\alpha$-mesosaprobic. Thus, the result indicates that the water quality of Osan stream is gradually improved by heavy rain.
Communications for Statistical Applications and Methods
/
v.17
no.1
/
pp.39-45
/
2010
As the value of environment is increasing, the water quality has been a matter of interest to the nation and people. Research on water quality has been widely studied, but focused on geographical characteristic and river characteristics like inflow, outflow, quantity and speed of water. In this paper, two approaches to measure the similarity of sampling sites by using water quality data are discussed and compared with two-years empirical data of Yongdam-Dam. The existing method has calculated their similarities with principal component scores. The proposed approach in this paper use correlation matrix of water quality related variables and MDS for measuring the similarity, which is shown to be better in the sense of being clustering which is identical to geographical clustering since it can consider the time series pattern of water quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.