• Title/Summary/Keyword: water quality sampling

Search Result 389, Processing Time 0.027 seconds

A Study on Measuring the Similarity Among Sampling Sites in Lake Yongdam with Water Quality Data Using Multivariate Techniques (다변량기법을 활용한 용담호 수질측정지점 유사성 연구)

  • Lee, Yosang;Kwon, Sehyug
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2009
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.

A Study on Measuring the Similarity Among Sampling Sites in Lake (저수지 수질조사 지점간 유사성 분석)

  • Lee, Yo-Sang;Koh, Deuk-Koo;Lee, Hyun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.957-961
    • /
    • 2010
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data. For empirical study, data of two years at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.

  • PDF

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.

Estimation of River Pollution Index Using Landsat Imagery over Tamsui River, Taiwan

  • Wang, Ying Hsuan;Sohn, Hong-Gyoo
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.88-93
    • /
    • 2018
  • In-situ water quality sampling is used for accurate water quality assessment. However, in-situ water quality sampling offers limited samples and requires much time and intensive labors. Remote sensing approach has recently applied for water quality assessment. It has shown the advantage of offering a synoptic view but also more efficient and economical. In this study, we utilized Landsat Imagery to estimate the water quality of the Tamsui River basin, considered as one of the most important rivers located in the north of Taiwan. In order to monitor water quality of Tamsui River basin, a linear regression relation between the value of spectral radiance and four water quality parameters are investigated with 38 water sampling stations. Through the regression model, we could estimate river pollution index (RPI) from the predicted value of four water quality parameters. By using RPI, we can examine the pollution level of Tamsui River. The accuracy of RPI conversion of this study ranged from 32.2% to 68.2%.

Construction and Application of Network Design System for Optimal Water Quality Monitoring in Reservoir (저수지 최적수질측정망 구축시스템 개발 및 적용)

  • Lee, Yo-Sang;Kwon, Se-Hyug;Lee, Sang-Uk;Ban, Yang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • For effective water quality management, it is necessary to secure reliable water quality information. There are many variables that need to be included in a comprehensive practical monitoring network : representative sampling locations, suitable sampling frequencies, water quality variable selection, and budgetary and logistical constraints are examples, especially sampling location is considered to be the most important issues. Until now, monitoring network design for water quality management was set according to the qualitative judgments, which is a problem of representativeness. In this paper, we propose network design system for optimal water quality monitoring using the scientific statistical techniques. Network design system is made based on the SAS program of version 9.2 and configured with simple input system and user friendly outputs considering the convenience of users. It applies to Excel data format for ease to use and all data of sampling location is distinguished to sheet base. In this system, time plots, dendrogram, and scatter plots are shown as follows: Time plots of water quality variables are graphed for identifying variables to classify sampling locations significantly. Similarities of sampling locations are calculated using euclidean distances of principal component variables and dimension coordinate of multidimensional scaling method are calculated and dendrogram by clustering analysis is represented and used for users to choose an appropriate number of clusters. Scatter plots of principle component variables are shown for clustering information with sampling locations and representative location.

Reconsideration for Current Water Quality Monitoring System throughout Daily Observation (매일 관측을 통한 현행 수질 모니터링 시스템 주기에 관한 재고)

  • Bae, Hun-Kyun
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.59-74
    • /
    • 2013
  • The weakness of current water quality monitoring system was reviewed to manage Nakdong river's water quality. The current monitoring system has sampling periods lasting for a week to 10 days, but these-SAMpling periods may not accurately measure the real level of water quality. Therefore, daily sampling and analysis of water samples for nine factors was performed from May 1st 2011 to Sep. 30st 2011 to check the water quality changes at three-SAMpling points, Munsanri (the upper side of Kangjung-Koryung weir), Kangchang (the outlet of the Kumho River) and Samunjin (the lower side of Kangjung-Koryung weir). As demonstrated by the results, concentrations of all nine factors dramatically changed on a daily basis, so daily sampling and analysis of water quality samples may be needed instead of weekly sampling and analysis of water quality samples to ensure the proper management of the Nakdong River's water quality. However, daily observations for all water sampling points are not possible because costs and labors are limited, so that new methods which could support the current monitoring system should be developed.

  • PDF

Statistical Water Quality Monitoring Network Design of Kyung-An Stream (통계적 기법을 이용한 경안천 유역의 수질 측정망 구성)

  • Kyoung, Min Soo;Kim, Sang Dan;Kim, Hung Soo;Park, Seok Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.291-300
    • /
    • 2006
  • In this study a statistical water quality monitoring network design of Kyung-An stream is proposed. Water quality data for the design is obtained by QUAL2E model simulation. The observed monthly average water quality data from March to November in Kyung-An stream has been applied to this study. HEC-RAS model is also used for QUAL2E hydrauric parameter estimation. Before QUAL2E water quality parameter estimation, FORA is performed to reduce the number of parameters to be estimated, and then water quality parameters are calibrated with a observed monthly average data. Using these simulated water quality data, the number of gage station and its location are estimated by kriging theory and branch & boundary method. Such a network design is based on two case; average flow and low flow case, respectively. Next, proportional sampling method is applied to estimate the sampling frequency.

Analysis of Pollutant Characteristics in Nakdong River using Confirmatory Factor Modeling (확인적 요인모형을 이용한 낙동강 유역의 오염특성 분석)

  • Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.84-93
    • /
    • 2012
  • The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.

Assessment for Water Quality of the Osan Stream using Epilithic Diatom Assemblage Index to Organic Pollution(DAIpo) (부착규조 군집과 유기오탁지수를 이용한 오산천의 수질평가)

  • Kim Baik-Ho;Choi Hwan-Seok;Kim Mi-Yeon;Yoo Hyung-Bin
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.45-50
    • /
    • 2004
  • To investigate the epilithic diatom community and water quality of the Osan stream, water samples were collected from the eight stations from April to September 2003. Sampling was two times before and after heavy rain. Total 52 diatom were identified and divided into 12 saproxenosus taxa, 6 saprophilous taxa and 34 indifferent taxa, respectively. The DAIpo values higher after heavy rain than before that. According to tolerance degree to the organic water pollution, all sampling stations ranged from $\alpha$-oligosaprobic to $\alpha$-mesosaprobic. Thus, the result indicates that the water quality of Osan stream is gradually improved by heavy rain.

Similarity of Sampling Sites by Water Quality (수질 관측지점 유사성 측정방법 연구)

  • Kwon, Se-Hyug;Lee, Yo-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • As the value of environment is increasing, the water quality has been a matter of interest to the nation and people. Research on water quality has been widely studied, but focused on geographical characteristic and river characteristics like inflow, outflow, quantity and speed of water. In this paper, two approaches to measure the similarity of sampling sites by using water quality data are discussed and compared with two-years empirical data of Yongdam-Dam. The existing method has calculated their similarities with principal component scores. The proposed approach in this paper use correlation matrix of water quality related variables and MDS for measuring the similarity, which is shown to be better in the sense of being clustering which is identical to geographical clustering since it can consider the time series pattern of water quality.