• Title/Summary/Keyword: water quality prediction

Search Result 421, Processing Time 0.028 seconds

Development and Evaluation of Runoff-Sediment Evaluation System and BMPs Evaluation Modules for Agricultural Fields using Hourly Rainfall (시강우량을 이용한 필지별 유출-유사 평가 시스템 및 BMPs 평가 모듈 개발 및 적용성 평가)

  • Kum, Donghyuk;Ryu, Jichul;Choi, Jaewan;Shin, Min Hwan;Shin, Dong Suk;Cheon, Se Uk;Choi, Joong-Dae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.375-383
    • /
    • 2012
  • Soil erosion has been emphasized as serious environmental problem affecting water quality in the receiving waterbodies. Recently, Best Management Practices (BMPs) have been applied at a field to reduce soil erosion and its effectiveness in soil erosion reduction has been monitored with various methods. Although monitoring at fields/watershed outlets would be accurate way for these ends, it is not possible at some fields/watersheds due to various limitations in direct monitoring. Thus modeling has been suggested as an alternative way to evaluate effects of the BMPs. Most models, which have been used in evaluating hydrology and water quality at a watershed, could not reflect rainfall intensity in runoff generation and soil erosion processes. In addition, source codes of these models are not always public for modification/enhancement. Thus, runoff-sediment evaluation system using hourly rainfall data and vegetated filter strip (VFS) evaluation module at field level were developed using open source MapWindow GIS component in this study. This evaluation system was applied to Bangdongri, Chuncheonsi to evaluate its prediction ability and VFS module in this study. The NSE and $R^2$ values for runoff estimation were 0.86 and 0.91, respectively, and measured and simulated sediment yield were 15.2 kg and 16.5 kg indicating this system, developed in this study, can be used to simulate runoff and sediment yield with acceptable accuracies. Nine VFS scenarios were evaluated for effectiveness of soil erosion reduction. Reduction efficiency of the VFS was high when sediment inflow was small. As shown in this study, this evaluation system can be used for evaluation BMPs with local rainfall intensity and variations considered with ease-of-use GIS interface.

Application Assessment of Passive Sampling to Monitor Polybrominated Diphenyl Ethers in Water Environment as Alternative Sampling Method for Grab Sampling (수계 중 폴리브롬화 디페닐에테르 모니터링을 위한 Passive Sampling 적용 및 그랩 시료채취법의 대체 활용가능성 평가)

  • Kim, Un-Jung;Seo, Chang Dong;Im, Tae-Hyo;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • PBDEs (polybrominated diphenyl ehters) are rarely dissolved in water due to their strong hydrophobicity and large molecular mass so not many researches were done in aqueous environment compared to other environmental compartments. However, the mass loading from wastewater treatment plant into aquatic environment, re-suspension from bottom sediment and partitioning from floating particles and colloids may not be negligible. It is, therefore, important but also difficult to investigate PBDEs in water environment. Recent overcoming resolution towards this barrier to monitor hydrophobic organic compounds in aquatic environment is using passive sampling technique like semipermeable membrane device. By using passive sampling, it might be possible to obtain long-term reproducible monitoring result and detect the trace amounts of PBDEs, with controlling fluctuation of surrounding environmental factors during the sampling event. So therefore, this study is purposed to confirm the possibility of using SPMD (semi-permeable membrane device) as water monitoring tool. Grab samples, composite samples and SPMDs were applied in river bank to evaluate the concentration difference and temporal fluctuation by various water sampling method, and to assess the water concentration prediction capability of SPMD for the PBDEs.

Sampling and Calibration Requirements for Optical Reflectance Soil Property Sensors for Korean Paddy Soils (광반사를 이용한 한국 논 토양 특성센서를 위한 샘플링과 캘리브레이션 요구조건)

  • Lee, Kyou-Seung;Lee, Dong-Hoon;Jung, In-Kyu;Chung, Sun-Ok;Sudduth, K.A.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.260-268
    • /
    • 2008
  • Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e.g., field, soil series) in which the sensor will be applied, or whether a general "factory" calibration is sufficient. A further question is if specific calibration is required, how many sample points are needed. In this study, these issues were addressed using data from 42 paddy fields representing 14 distinct soil series accounting for 74% of the total Korean paddy field area. Partial least squares (PLS) regression was used to develop calibrations between soil properties and reflectance spectra. Model evaluation was based on coefficient of determination ($R^2$) root mean square error of prediction (RMSEP), and RPD, the ratio of standard deviation to RMSEP. When sample data from a soil series were included in the calibration stage (full information calibration), RPD values of prediction models were increased by 0.03 to 3.32, compared with results from calibration models not including data from the test soil series (calibration without site-specific information). Higher $R^2$ values were also obtained in most cases. Including some samples from the test soil series (hybrid calibration) generally increased RPD rapidly up to a certain number of sample points. A large portion of the potential improvement could be obtained by adding about 8 to 22 points, depending on the soil properties to be estimated, where the numbers were 10 to 18 for pH, 18-22 for EC, and 8 to 22 for total C. These results provide guidance on sampling and calibration requirements for NIR soil property estimation.

Smart Growth Measurement System for Aquaponics Production Management (아쿠아포닉스 생산 관리를 위한 지능형 성장 측정 시스템)

  • Lee, Hyounsup;Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.357-359
    • /
    • 2022
  • The market for eco-friendly food materials by online distribution is rapidly growing due to major environmental pollution such as air, soil, and water quality, and radical changes in living patterns caused by COVID-19. In addition, because of the aging population and the decrease in agricultural-related population due to social structural changes, aquaponics is emerging as a system that can solve problems such as independence of old economic activities, environmental protection, and securing healthy and safe food. This paper aims to design an intelligent plant growth measurement system among intelligent aquaponics production management modules for optimal growth environment derivation and quantitative production prediction by converging various ICT technologies into existing aquaponics systems. In particular, the focus is on designing systems suitable for production sites that do not have high-performance processing resources, and we propose a module configuration plan for production environments and training data and prediction systems.

  • PDF

Prediction of Water Qualities and Heavy Metals by Application of Water Quality Improvement Plans in Rimac River, Peru (페루 리막강 수질개선 대책에 따른 수질 및 중금속 예측 연구)

  • Yi, Hye-Suk;Chong, Sun-A;Lee, Sanguk;Lee, Yosang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.497-497
    • /
    • 2016
  • 페루의 Rimac강은 수도인 Rima시를 관통하는 강으로 각종 용수공급 등의 기능을 담당하는 중요한 강이지만 광산, 공장 및 도시 등 점?비점오염원으로 인해 오염이 심각해지고 있는 실정이다. 본 연구에서는 Rimac강의 하천복원을 위하여 3단계 수질개선 목표를 설정하고 각 단계별 BOD, TP 및 중금속(Al, As, Cd, Fe) 예측을 수행함으로써 목표달성 가능 평가를 수행하였다. Rimac강 지류인 Rio Santa Eulalia 하천 유입후부터 하구까지 총 57 km를 대상으로 4개의 대구간(Reach), 57개의 소구간(Element)으로 구분하여 QUAL2E 모델을 구축하였다. 2013년을 대상으로 저유량시기(건기)인 12월과 고유량시기(우기)인 1월을 대상으로 BOD, TP, Al, As, Cd, Fe의 모델 재현성을 검토한 결과, Rimac강 하류의 Huaycoloro강 유입이후 BOD, TP가 증가하는 현상을 적절히 재현하는 것으로 나타났다. 중금속은 Romac강 상류와 하류 Huaycoloro강 유입 수질 농도차이가 크지 않아 거리별로 일정한 농도를 나타내는 것으로 모의되었으나 실측정값은 하구로 갈수록 낮아지는 경향이 다소 나타났지만 대체적으로 실측값의 경향을 따르는 것으로 모의되었다. 수질개선 시나리오는 1단계(2016-2018년), 2단계(2019-2021년) 및 최종 3단계(2022-2024년)로 구분하여 저유량시기와 고유량시기의 수질개선 대책에 따른 수질변화를 예측하여 Rimac강 하류의 대표 지점인 La Atargea 취수장 지점에서 목표수질 달성여부를 평가하였다. 저유량시기의 경우, BOD는 1단계 이후 5.9 mg/L에서 목표수질 5.0 mg/L 이하로 농도가 감소되었으며 최종 3단계에 2.2 mg/L로 63.3% 개선하는 것으로 예측되었다. TP는 1단계 25.8% 개선, 3단계는 51.6% 개선되어 목표수질인 0.15 mg/L를 만족하는 것으로 예측되었다. 중금속의 경우 Cd는 당초 수질목표를 만족시키는 상황이었으며 그 외 항목은 Al>As>Fe 순으로 개선효과가 나타났고, 3단계 이후 모두 목표수질을 달성할 것으로 예측되었다. 고유량시기 수질예측 결과, 1단계 BOD, TP는 약 49, 19% 저감효과가 나타났으며 3단계 이후 57, 25%까지 개선되는 것으로 예측되어 목표수질을 만족시키는 것으로 분석되었다. 중금속은 Al이 가장 큰 개선 효과가 나타났으며 3단계에서 77.5%의 개선 효과가 분석되었다. 페루 리막강 유역 수질개선 대책 수립에 따른 수질개선효과 분석 결과, 3단계까지 모든 수질항목의 목표수질 달성이 가능한 것으로 분석되었으나 TP, Al 및 As의 경우에 2단계까지 목표수질 달성이 어려워 더욱 체계적인 관리가 필요할 것으로 판단되었다.

  • PDF

Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 (CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의)

  • Chung, Se-Woong;Oh, Jung-Kuk;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.655-664
    • /
    • 2005
  • A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{\circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.

Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black

  • Chhun, Kean Thai;Choo, Hyunwook;Kaothon, Panyabot;Yune, Chan-Young
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Soil-cement stabilization is a type of ground improvement method which has been used to improve the engineering properties of soil. The unconfined compression test is the commonly used method to evaluate the quality of the stabilized soil due to its simplicity, reliability, rapidity and cost-effectiveness. The main objective of this study was to evaluate the effect of recovered carbon black (rCB) on the strength characteristic of cement-stabilized sand. Various rCB contents and water to cement ratios (w/c) were examined. The unconfined compression test on stabilized sand with different curing times was also conducted for a reconstituted specimen. From the test result, it was found that the compressive strength of cement-stabilized sand increased with the increase of the rCB content up to 3% and the curing time and with the decrease of the w/c ratio, showing that the optimum rCB concentration of the tested stabilized sand was around 3%. In addition, a prediction equation was suggested in this study for cement-stabilized sand with rCB as a function of the w/c ratio and rCB concentration at 14 and 28 days of curing.

Development of Multilayer Perceptron Model for the Prediction of Alcohol Concentration of Makgeolli

  • Kim, JoonYong;Rho, Shin-Joung;Cho, Yun Sung;Cho, EunSun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.229-236
    • /
    • 2018
  • Purpose: Makgeolli is a traditional alcoholic beverage made from rice with a fermentation starter called "nuruk." The concentration of alcohol in makgeolli depends on the temperature of the fermentation tank. It is important to monitor the alcohol concentration to manage the makgeolli production process. Methods: Data were collected from 84 makgeolli fermentation tanks over a year period. Independent variables included the temperatures of the tanks and the room where the tanks were located, as well as the quantity, acidity, and water concentration of the source. Software for the multilayer perceptron model (MLP) was written in Python using the Scikit-learn library. Results: Many models were created for which the optimization converged within 100 iterations, and their coefficients of determination $R^2$ were considerably high. The coefficient of determination $R^2$ of the best model with the training set and the test set were 0.94 and 0.93, respectively. The fact that the difference between them was very small indicated that the model was not overfitted. The maximum and minimum error was approximately 2% and the total MSE was 0.078%. Conclusions: The MLP model could help predict the alcohol concentration and to control the production process of makgeolli. In future research, the optimization of the production process will be studied based on the model.

The Determination of Diffusion and Partition Coefficients of Indoor Bottom Finishing Materials (바닥재의 확산계수 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Yun, Joong-Seop
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Many building materials may contain high concentrations of volatile organic compounds (VOCs) and other hazardous pollutants(HAPs). Specifically, VOCs discharged by indoor building material may cause "new house" syndrome, atopic dermatitis etc. The diffusion coefficient and initially contained total VOC quantity were determined using microbalance experiments and small chamber tests. Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF