This study investigates the seasonal variation and spatial distribution characteristics of pollutant load, as executing the quality valuation of pollutant load inflowing into Yeong-il Bay from on-land including the Hyeong-san River. Annual total pollutant generating rate from Yeong-il Bay region are 202ton-BOD/day, 620ton-SS/day, 42ton-TN/day, and 16ton-TP/day, respectively. Particularly, the generating ration of the pollutant loads from the Hyeong-san River is greater than that of any other watershed of the Yeong-il Bay, of which BOd is about 78.2%, SS 88.5%, T-N 62.5%, T-P 73.1%, As calculating Tank model with input value of daily precipitation and evaporation of 2001 year in drainage basin of the Hyeong-san River, the estimated result of the annual river discharge effluence from this river is 830106㎥, As a result to estimating annual effluence rate outflowing at the rivers from each drainage basin. annual inflow pollutant rates are 10,633ton-BOD/year, 19,302ton-SS/year, 15,369ton-TN/year, 305ton-TP/year, respectively. The population congestion region of the Pohang-city is a greater source of pollutant loads than the Neang-Chun region with wide drainage area. Therefore, the quantity of TN inflowing into Yeong-il Bay is much more than T-P. The accumulation of pollutant load effluenced from on-land will happen at the inner coast region of Yeon-il Bay. Finally, We would make a prediction that the water quality will take a bad turn.
Dried noodles (somyon) were stored for 7 months at 25, 35 and 45$^{\circ}C$, and changes of water activity, amylograms and color of dried noodle at 4 week intervals were comparatively analyzed. The water activities during storage period were 0.43∼0.56 at all storage temperature. The breakdown of dried noodle by RVA(rapid visco analyser) increased as storage period increased. Color difference ($\Delta$E) was chosen for quality index due to the highest correlation coefficient between sensory score and color difference. The shelf-life of dried noodle was estimated from change of color, which was linearly increased as the storage period increased. The activation energy and Q$\sub$10/ value for color difference were 75.21 kJ/mol and 2.76 at 25$^{\circ}C$, respectively. Shelf-life of dried noodle at 25 were 27.9 months, respectively.
An Artificial Neural Network including a Radial Basis Function (RBF) and a Time Delay Neural Network (TDNN) was used to predict total dissolved solid (TDS) in the river Zayanderud. Water quality parameters in the river for ten years, 2001-2010, were prepared from data monitored by the Isfahan Regional Water Authority. A factor analysis was applied to select the inputs of water quality parameters, which obtained total hardness, bicarbonate, chloride and calcium. Input data to the neural networks were pH, $Na^+$, $Mg^{2+}$, Carbonate ($CO{_3}^{-2}$), $HCO{_3}^{-1}$, $Cl^-$, $Ca^{2+}$ and Total hardness. For learning process 5-fold cross validation were applied. In the best situation, the TDNN contained 2 hidden layers of 15 neurons in each of the layers and the RBF had one hidden layer with 100 neurons. The Mean Squared Error and the Mean Bias Error for the TDNN during the training process were 0.0006 and 0.0603 and for the RBF neural network the mentioned errors were 0.0001 and 0.0006, respectively. In the RBF, the coefficient of determination ($R^2$) and the index of agreement (IA) between the observed data and predicted data were 0.997 and 0.999, respectively. In the TDNN, the $R^2$ and the IA between the actual and predicted data were 0.957 and 0.985, respectively. The results of sensitivity illustrated that $Ca^{2+}$ and $SO{_4}^{2-}$ parameters had the highest effect on the TDS prediction.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.334-334
/
2022
Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.
Seo, Il Won;Choi, Nam Jeong;Jun, In Ok;Song, Chang Geun
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.3B
/
pp.221-230
/
2009
In Korea, many water intake plants are easily affected by effluents of sewage treatment plants because sewage treatment plants are usually located upstream or nearby the plants of the same riverine area. Furthermore, the inflow of harmful contaminants owing to pollutant spills or transportation accidents of vehicles using the roads and bridges intersecting the river causes significant impact on the management of water intake plants. Paldang lake, the main water intake plants in Korea, is especially exposed to various water pollution accidents, because the drainage basin area is significantly large compared to the water surface area of the lake. Therefore it is necessary to predict the possible pollutant spill in advance and consider measurements in case of water pollution. In this study, water quality prediction was performed in Paldang Lake in Korea durig the dry season using two-dimensional numerical models. In order to represent the cases of pollutant accidents, the difference of pollutant transport patterns with varying injection points was analyzed. Numerical simulations for hydrodynamics of water flow and water quality predictions were performed using RMA-2 and RAM4 respectively. As a result of simulation, the difference of pollutant transport with the injection points was analyzed. As a countermeasure against the pollutant accident, the augmentation of the flow rate is proposed. In comparison with the present state, the rapid dilution and flushing effects on the pollutant cloud could be expected with increase of flow rate. Thus, increase of flow rate can be used for operation of water intake plants in case of pollutant spill accidents.
Lee, Seung Jae;Kim, Hyeon Sik;Sohn, Byeong Yong;Han, Ji Hyun
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.41-41
/
2018
하천과 저수지의 수질을 예측하고 관리하는데 수리 수질예측모형이 널리 활용되고 있다. 수질예측모형은 유역이나 수체 내의 오염물질 이동경로나 농도를 수치해석 방법으로 계산하여 사용자가 필요로 하는 지점과 시점에서의 수질자료 생산하는데 활용되고 있다. 수질예측모형은 검 보정을 통해 정확도를 확보하며, 정확도의 확보를 위해서는 높은 수준의 전문성을 필요로 한다. 특히 시행착오법으로 모형을 보정하는 경우 많은 시간과 노력을 필요로 하게 되며, 보정계수를 과대 혹은 과소로 모형에 적용하는 오류를 범하기 쉽고 모델러의 주관이 관여되기 쉽다. 그래서 본 연구에서는 CE-QUAL-W2모형의 조류항목에 대한 모형 보정을 위하여 Chl-a와 남조류세포수에서 주로 활용되고 있는 보정계수에 대한 민감도 분석 결과를 토대로 매개변수별 모의결과 변화율을 산정하였으며, 시기적 경향성을 재현하기 위해 Ensemble-Bagging 기법과 머신 러닝 기법을 적용하여 모형 구동횟수를 최소화 할 수 있는 방법으로 구성하였다. Chl-a를 보정하기 위한 매개변수는 9개를 선정하였으며, 규조류, 남조류, 녹조류에 총 27개 매개 변수를 민감도 분석으로 도출 한 후 예상 변화율 대비 이벤트별 모의치와 실측치 간 %difference가 유사하도록 매개변수를 조정하였다. 또한 각 이벤트 조합의 매개변수 빈도수와 매개변수별 예상변화율, 시기적 조류특성을 고려하여 가중치를 도출하였으며, 1회 보정에 맞춰 Chl-a 모델 실행결과를 %difference로 평가한 후 "good"등급을 만족할 때까지 반복 적용하였다. 남조류세포수의 경우 Chl-a에 맞춰 매개변수 최적화 이후 남조류세포수 농도를 세포수로 환산하기 위한 CACEL에 대해 머신러닝 기법을 적용하였으며, CACEL 추정변화율 회귀식에 따라 평가 한 후 %difference "good"등급 이상을 만족할 때까지 반복 수행하는 방법을 적용하였다. 본 연구에서는 수질예측모형의 정확도를 확보하기 위하여 최적화 기법을 적용하였으며, 이를 통해 모형을 보정하는 과정에서 요구되는 시간과 노력을 줄일 수 있도록 하였으며, Ensemble기법과 머신러닝 기법을 적용하여 모형보정계수 적용에 객관성을 확보할 수 있도록 하였다.
Journal of The Geomorphological Association of Korea
/
v.23
no.1
/
pp.87-101
/
2016
This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.
Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.
This paper presents a machine learning technique applied to prediction of time-dependent local scour around bridge piers in both non-cohesive and cohesive beds. The support vector machines (SVM), which is known to be free from overfitting, is used. The time-dependent scour depths are expressed by 7 and 9 variables for the non-cohesive and cohesive beds, respectively. The SVM models are trained and validated with time series data from different sources of experiments. Resulting Mean Absolute Percentage Error (MAPE) indicates that the models are trained and validated properly. Comparisons are made with the results from Choi and Choi's formula and Scour Rate in Cohesive Soils (SRICOS) method by Briaud et al., as well as measured data. This study reveals that the SVM is capable of predicting time-dependent local scour in both non-cohesive and cohesive beds under the condition that sufficient data of good quality are provided.
As a series of studies on the preservation methods for boiled-dried anchovies, determination of sorption properties and shelf-life prediction were made for the samples. Dried anchovies, which were gamma-irradiated at pre-established dose (5 kGy) after packaging in both a polyethylene film (PE, 0.1 mm) and a laminated film $(nylon\;15\;{\mu}m/polyethylene\;100\;{\mu}m,\;NY/PE)$, were subjected to a quality evaluation during 4 months at different storage conditions, such as $15^{\circ}C/68%\;RH,\;25{\circ}C/75%\;RH,\;and\;35^{\circ}C/84%$ RH. The sample showed 5.47% of BET monomolecular layer moisture content and the corresponding water activity, 0.15. The velocity constants of browning reaction and organoleptic changes in the sample were in proportion to storage temperature, and $Q_{10}$, values were ranged from 2.17 to 2.40 in a given packaging and irradiation conditions. In the shelf-life prediction of the stored sample at $25^{\circ}C$, non-irradiated groups packaged in PE and NY/PE were 84 days and 125 days. While 5 kGy-irradiated groups in the same packaging were 126 days and 138 days, respectively. This finding proved the efficacy of laminated-film packaging and irradiation treatment in preserving the quality of dried anchovies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.