• 제목/요약/키워드: water quality parameters

Search Result 1,072, Processing Time 0.018 seconds

Comparative Analysis of Nitrogen Concentration of Rainfall in South Korea for Nonpoint Source Pollution Model Application (비점오염모델 적용을 위한 우리나라 행정구역별 강수 중 질소농도 비교분석)

  • Choi, Dong Ho;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung-Chang;Choi, Soon-Kun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • BACKGROUND: Water quality management of river requires quantification of pollutant loads and implementation of measures through monitoring study, but it requires labour and costs. Therefore, many researchers are performing nonpoint source pollution analysis using computer models. However, calibration of model parameters needs observed data. Nitrogen concentration in rainfall is one of the factors to be considered when estimating the pollutant loads through application of the nonpoint source pollution model, but the default value provided by the model is used when there are no observed data. Therefore, this study aims to provide the representative nitrogen concentration of the rainfall for the administrative district ensuring rational modeling and reliable results. METHODS AND RESULTS: In this study, rainfall monitoring data from June 2015 to December 2017 were used to determine the nitrogen concentration in rainfall for each administrative district. Range of the $NO_3{^-}$ and $NH_4{^+}$ concentrations were 0.41~6.05 mg/L, 0.39~2.27 mg/L, respectively, and T-N concentration was 0.80~7.71 mg/L. Furthermore, the national average of T-N concentration in this study was $2.84{\pm}1.42mg/L$, which was similar to the national average of T-N 3.03 mg/L presented by the Ministry of Environment in 2015. Therefore, the nitrogen concentrations suggested in this study can be considered to be resonable values. CONCLUSION: The nitrogen concentrations estimated in this study showed regional differences. Therefore, when estimating the pollutant loads through application of the nonpoint source pollution model, resonable parameter estimation of nitrogen concentration in rainfall is possible by reflecting the regional characteristics.

Physicochemical and textural properties of thawed pork by vacuum tumbling (진공 텀블링을 이용한 해동 돈육의 이화학적 및 조직학적 특성)

  • Su-Jin Park;Won-Ho Hong;Seung-Min Oh;Chang-Hee Cho;Jiyeon Chun
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.423-432
    • /
    • 2024
  • In this study, a vacuum tumbler with 4 impellers (DVT) was designed and applied for thawing frozen pork (vacuum -60 kPa, jacket 35℃, 1 rpm). Quality characteristics of the thawed pork were compared with those of industrially thawed meat by natural air at room temperature (NAT) and imported vacuum tumbler (IVT). The thawing time for frozen pork (303.36 kg) using DVT (165 min) was much shorter than that of NAT (4,200 min). DVT-thawed pork had lower drip loss (0.85%) than NAT (2.08%). DVT-thawed pork showed a pH of 5.92, a total bacterial count of 1.96±0.02 log CFU/g and no coliforms. Deteriorations in fat (TBARS 0.31±0.01 MDA mg/kg) and protein (VBN 5.67±1.98 mg%) in DVT-thawed pork were significantly lower than those of NAT (p<0.05). DVT-thawed pork had a high water-holding capacity (WHC, 97.5%). The hardness (34.59±0.46 N) and chewiness (188.21±0.17) of cooked DVT-thawed pork were about 5-6 times lower than those of NTA. Microstructure (SEM) showed myofibrillar damage in NAT-thawed pork, whereas dense myofibrillar structure was observed in DVT-thawed pork. DVT was better or similar to IVT in all evaluation parameters. The designed DVT is expected to be used as an efficient thawing method in terms of processing time and yield and to produce thawed meat with high WHC, soft texture, and low spoilage by minimizing tissue damage.