• 제목/요약/키워드: water pipe network

검색결과 185건 처리시간 0.022초

상수관로의 노후도 영향인자 및 가중치 산정에 관한 연구 (Estimation of Deterioration and Weighting Factors in Pipes of Water Supply Systems)

  • 김응석;김중훈;이현동
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.686-699
    • /
    • 2002
  • The purpose of this study is to estimate deterioration factors and weighting factors in pipe network which each local self-governments takes rehabilitation and replacement work present time. Deterioration factors in pipe network are able to effected of specific province or location related with water supply. Most of water supply pipes are laid under the ground, it is hard to quantify deterioration degree of water system. Moreover, the timing and economic limitation and insufficient information on the spot survey gives a difficulty to look over how old water supply system is. Accordingly, this study collects and analyses five data as the laying environment, visual analysis, analysis of soil contents, analysis of pipe material, and questionary survey data in water pipe of A city. The deterioration factor estimates 14 factors with excavation and experimental analysis and 9 factors without excavation and experimental analysis. Also, the weighting factors are estimated by using the multiple linear regressions and the linear programming. The estimated deterioration factor and weighting results are compared the analysis result of visual, pipe material, and soil contents with the Probabilistic Neural Network Model. Consequently, the model results of estimated 9 factors in this study and 14 factors show the 1-2% difference. The result show that the proposed model could be used to decide the deterioration condition of pipe line with real excavation and experimental analysis.

상수관망 블록의 대표적인 용수사용 유형에 대한 최소 용수사용 시간의 결정 (Determining the Time of Least Water Use for the Major Water Usage Types in District Metered Areas)

  • 박수완;정소연
    • 상하수도학회지
    • /
    • 제29권3호
    • /
    • pp.415-425
    • /
    • 2015
  • Aging water pipe networks hinder efficient management of important water service indices such as revenue water and leakage ratio due to pipe breakage and malfunctioning of pipe appurtenance. In order to control leakage in water pipe networks, various methods such as the minimum night flow analysis and sound waves method have been used. However, the accuracy and efficiency of detecting water leak by these methods need to be improved due to the increase of water consumption at night. In this study the Principal Component Analysis (PCA) technique was applied to the night water flow data of 426 days collected from a water distribution system in the interval of one hour. Based on the PCA technique, computational algorithms were developed to narrow the time windows for efficient execution of leak detection job. The algorithms were programmed on computer using the MATLAB. The presented techniques are expected to contribute to the efficient management of water pipe networks by providing more effective time windows for the detection of the anomaly of pipe network such as leak or abnormal demand.

복합배수관망에 있어서 선형 및 비선형 해석기법의 적용 (Application of Linear and Nonlinear Analysis Technique on the Complex Water Distributing System)

  • 고수현;최윤영;안승섭
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.69-78
    • /
    • 2001
  • In this study optimal analysis of pipe network was performed using linear and non linear analysis method for complex real pipe network system of Mungyeong water purification field system which consists of 70 nodes and 86 elements. From the examination result of total flow which is distributed to each pipe, it is found that KYPIPE2 Model supplies less amount than NLAM. It is known that dynamic water level and pressure head of KYPIPE2 Model and NLAM are nearly in accordance with each other from each method of the pipe network analyses, and appeared that both methods of analysis shows high reliable result since the distribution of dynamic water level for every node is the short range of EL. 205.0m~EL. 210.0m besides the pressed dynamic water level. The analysis results of pressure in the methods of pipe network analysis for KYPIPE2 Model and NLAM are similar and it is satisfactory result that the pressure distributions of the tab water design criterion of 5.0kgf/cm$^2$ besides the small part of highland.

  • PDF

상수도관망에서 분리한 잔류염소 내성균에 관한 연구 (Study on the Chlorine-Resistant Bacteria Isolated from Water Pipe Network)

  • 현재열;윤종호
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.334-341
    • /
    • 2011
  • The free residual chlorine of tap water samples, collected from 266 faucets on the water pipe network in Daegu City, was between 0.1 and 0.79 mg/L. On microorganic tests, general bacteria and the coliform goup were not detected and thus the tap water was turned out to be fit to drink. In particular, samples of which free residual chlorine was 0.1 mg/L and over were cultured in R2A agar media at $25^{\circ}C$ for 7 days, and as a result heterotrophic bacteria were detected in 65.9% of samples; (1). The closer tap water got to the faucet from the stilling basin, the lower residual chlorine concentration became but the more the bacterial count became. And, more bacteria were detected in the R2A agar medium than in the PCA medium. (2). In the case of separated strains, most colonies were reddish or yellowish. 16S rRNA sequence was identified as Methylobacterium sp. and Williamsia sp., and yellow strain was identified as Sphingomonas sp., Sphingobium sp., Novosphingobium sp., Blastomonas sp., Rhodococcus sp. and Microbacterium sp. White strain was identified as Staphylococcus sp. (3). Sterilized tap water in polyethylene bottles was inoculated with separated strain and was left as it was for 2 months. As a result, bio-film was observed in tap water inoculated with Methylobacterium sp. and Sphingomonas sp. It was found that heterotrophic bacteria increased when free residual chlorine was removed from tap water in the water pipe network. Thus, there is a need to determine a base value for heterotrophic bacteria in order to check the cleanliness of tap water in the water pipe network.

Optimal Design of Irrigation Pipe Network with Multiple Sources

  • Lyu, Heui-Jeong;Ahn, Tae-Jin
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.9-18
    • /
    • 1997
  • Abstract This paper presents a heuristic method for optimal design of water distribution system with multiple sources and potential links. In multiple source pipe network, supply rate at each source node affects the total cost of the system because supply rates are not uniquely determined. The Linear Minimum Cost Flow (LMCF) model may be used to a large scale pipe network with multiple sources to determine supply rate at each source node. In this study the heuristic method based on the LMCF is suggested to determine supply rate at each source node and then to optimize the given layout. The heuristic method in turn perturbs links in the longest path of the network to obtain the supply rates which make the optimal design of the pipe network. Once the best tree network is obtained, the frequency count of reconnecting links by considering link failure is in turn applied to form loop to enhance the reliability of the best tree network. A sample pipe network is employed to test the proposed method. The results show that the proposed method can yield a lower cost design than the LMCF alone and that the proposed method can be efficiently used to design irrigation systems or rural water distribution systems.

  • PDF

결함트리분석을 이용한 상수관망 단수 리스크 저감 최적 방안 연구 (A study on optimal planning of risk reduction for water suspension in water pipe system using fault tree analysis)

  • 최태호;김아리;김민철;구자용
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.699-711
    • /
    • 2014
  • This study was carried out to analyze water suspension in the water supply system through fault tree analysis. And quantitative factors was evaluated to minimize water suspension. Consequently the aim of this study is to build optimal planning by analyzing scenarios for water suspension. Accordingly the fault tree model makes it possible to estimate risks for water suspension, current risks is $92.23m^3/day$. The result of scenario analysis by pipe replacement, risks for water suspension was reduced $7.02m^3/day$ when replacing WD4 pipe. As a result of scenario analysis by water district connections, the amount of risk reduction is maximized when it is connecting to network pipe of D Zone. Therefore, connecting to network pipe for D Zone would be optimal to reduce risk for water suspension.

상수도 배관의 갱생 공정을 위한 배관 건설 로봇 개발 (Development of the Pipe Construction Robot for Rehabilitation Work Process of the Water Pipe Lines)

  • 정명수;이재열;홍성호;장민우;신동호;함제훈;서갑호;서진호
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.223-231
    • /
    • 2021
  • In this paper describes the research and development of a pipe robot for pipe rehabilitation construction of old water pipes. After the water supply pipe construction, the pipe is leaking, damaged, and aging due to corrosion. Eventually, resistance to the flow of water in lower supply efficiency and contaminated water such as rusty water, finally in various consumer complaints. In order to solve this problem, rehabilitation construction robot technology is required to secure the construction quality of pipe rehabilitation construction and restore the function of the initial construction period. The developed pipe rehabilitation construction robot required a hydraulic actuator for high traction and was equipped with a small hydraulic supply device. In addition, we have developed a hydraulic cylinder and a link system that supports the pipe inner diameter to develop a single pipe robot corresponding to 500 to 800mm pipe diameter. The analysis and experimental verification of the driving performance and unit function of the developed pipe reconstruction robot are explained, and the result of the integrated performance test of the pipe reconstruction robot at the water supply pipe network site is explained.

상수관로 개량 우선순위 수립을 위한 퍼지 기법 (Fuzzy Techniques to Establish Improvement Priorities of Water Pipes)

  • 박수완;김태영;임기영;전환돈
    • 한국수자원학회논문집
    • /
    • 제44권11호
    • /
    • pp.903-913
    • /
    • 2011
  • 본 논문에서는 상수관로의 개량(교체또는갱생) 우선순위를 결정하는데 있어서 평가되어야 할 인자 또는 요소를 관로의 파손이 전체관망에 미치는 영향 및 개별관로의 특성으로 구분하였고, 이들을 퍼지기법을 적용하여 정량적으로 산정할 수 있는 모형을 개발하였다. 퍼지기법으로 산정되는 관로의 파손이 전체관망에 미치는 영향을 관로의 퍼지 중요도로 정의하였으며, 개별관로의 특성은 관로의 퍼지 특성도로 정의하였다. 퍼지 특성도는 다시 퍼지 노후도 및 퍼지 난이도 등으로 구분하여 산정할 수 있게 하였다. 한편, 각 평가요소를 퍼지기법으로 산정함에 있어서 적합한 평가대상이 차지하는 비중에 따라 평가대상의 가중치를 고려할 수 있도록 하였다. 본 연구에서 개발된 방법론의 적용예를 제시하기 위하여 EPANET 관망해석 프로그램의 예제관망으로 제공되는 Net3 관망을 이용하였다. 관로의 파손이 전체관망에 미치는 수리학적 영향과 개별 관로의 특성중의 하나인 관로의 노후도를 Net3 관망내 관로 개량 우선순위 결정에 고려하여야 할 요소로 선정하여 Net3 관망 내 관로의 퍼지 중요도(Fuzzy Importance Index, FII) 및 퍼지 노후도(Fuzzy Deterioration Index, FDI)를 산정하였으며, 이를 이용하여 Net3 관망내 관로의 개량 우선순위를 수립하였다.

용수공급 안정화를 위한 연계관로 설계 및 평가 (A Study on the design and evaluation of connection pipes for stable water supply)

  • 장용훈;김주환;정관수
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.249-256
    • /
    • 2012
  • The paper describes a design methodology that can select a proper reliability factor and apply the selected reliability factor into the real water distribution system. Reliability factors which are used for the assesment of water supply networks, can be categorized by a connectivity, a reachability, an expected shortage and an availability. Among these factors, an expected shortage is the most proper reliability factor in the aspect of economic evaluation. Therefore, the expected shortage is applied to draw a water supply reliability into Changwon water supply systems. And the economic pipe diameter can be determined as 600mm for a connection pipe in the pipe network from the estimation of the expected shortage. Also, a quantitative effect of the connection pipe can be expressed in terms of the reduction, which is estimated by the expected shortage of 30,269$m^{3}$ from 68,705$m^{3}$ at initial condition to 38,436$m^{3}$ under the connected condition with the diameter 600mm pipe.

부정류 효과를 고려한 조압수조가 있는 상수관망의 파괴확률 (Probability of Pipe Breakage for Pipe Network with Surge Tank regarding Unsteady Effect)

  • 권혁재;이철응
    • 한국수자원학회논문집
    • /
    • 제42권10호
    • /
    • pp.785-793
    • /
    • 2009
  • 본 연구에서는 부정류 상태의 조압수조를 해석 할 수 있는 수치모형이 개발되었다. 그리고 부정류 효과를 고려한 파이프의 파괴확률 산정을 위한 신뢰성 모형이 개발되었다. 파이프 파괴의 상대적 위험도 평가와 조압수조의 기능성 평가를 위해 부정류 효과를 고려한 조압수조가 있는 상수관망 시스템의 파괴확률을 산정하였다. 신뢰성 해석을 통하여 부정류가 파괴확률을 크게 증가 시키는 것을 알 수 있었으며 조압수조가 부정류의 압력을 크게 감쇠시킴으로써 파괴확률을 현저히 저하시키는 것을 확인할 수 있었다.