• Title/Summary/Keyword: water pipe

Search Result 1,710, Processing Time 0.023 seconds

Electronics Cooling Using the Porous Metallic Materials

  • Lucaci, Mariana;Orban, Radu L.;Lungu, Magdalena;Enescu, Elena;Gavriliu, Stefania
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.315-316
    • /
    • 2006
  • The paper presents some results regarding the obtaining of some copper heat pipes with a porous copper internal layer for electronic components cooling. The heat pipes were realized by sintering of spherical copper powders of $90{\div}125\;{\mu}m$ size directly on the internal side of a copper pipe of 18 mm in diameter. The obtained pipes were then brazed in order to obtain a heat pipe of 0.5 m in length. After that, the heat pipe was sealed and filled with a small quantity of distilled water as working fluid. To establish the total heat transport coefficient and the thermal flow transferred at the evaporator, some external devices were realized to allow the heating of the evaporator and the cooling of the condenser. Water heat pipes are explored in the intermediate temperature range of 303 up to 500 K. Test data are reported for copper water heat pipe, which was tested under different orientations. The obtained results show that the water heat pipe has a good thermal transfer performance in the temperatures range between 345 and 463 K.

  • PDF

Performance assessment of polymeric filler and composite sleeve technique for corrosion damage on large-diameter water pipes (대구경 상수도관 부식 손상부의 고분자 필러와 복합슬리브 성능 평가)

  • Ho-Min Lee;Jeong-Soo Park;Jeong-Joo Park;Cheol-Ho Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.203-214
    • /
    • 2023
  • In this study, the physical properties and fracture characteristics according to the tensile load are evaluated on the materials of the polymeric filler and carbon fiber-based composite sleeve technique. The polymeric filler and the composite sleeve technique are applied to areas where the pipe body thickness is reduced due to corrosion in large-diameter water pipes. First, the tensile strength of the polymeric filler was 161.48~240.43 kgf/cm2, and the tensile strength of the polyurea polymeric filler was relatively higher than that of the epoxy. However, the tensile strength of the polymeric filler is relatively very low compared to ductile cast iron pipes(4,300 kgf/cm2<) or steel pipes(4,100 kgf/cm2). Second, the tensile strength of glass fiber, which is mainly used in composite sleeves, is 3,887.0 kgf/cm2, and that of carbon fiber is up to 5,922.5 kgf/cm2. The tensile strengths of glass and carbon fiber are higher than ductile cast iron pipe or steel pipe. Third, when reinforcing the hemispherical simulated corrosion shape of the ductile cast iron pipe and the steel pipe with a polymeric filler, there was an effect of increasing the ultimate tensile load by 1.04 to 1.06 times, but the ultimate load was 37.7 to 53.7% compared to the ductile cast iron or steel specimen without corrosion damage. It was found that the effect on the reinforcement of the corrosion damaged part was insignificant. Fourth, the composite sleeve using carbon fiber showed an ultimate load of 1.10(0.61T, 1,821.0 kgf) and 1.02(0.60T, 2,290.7 kgf) times higher than the ductile cast iron pipe(1,657.83 kgf) and steel pipe(2,236.8 kgf), respectively. When using a composite sleeve such as fiber, the corrosion damage part of large-diameter water pipes can be reinforced with same level as the original pipe, and the supply stability can be secured through accident prevention.

Design of Closed Loop Pipe Cooling System (냉각수 순환 형태의 파이프 쿨링 공법의 설계)

  • 박찬규;왕인수;구자중
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.52-57
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. The pipe cooling method leads to the decrease of curing period by lagging materials as well as the decrease of temperature difference between center and surface of mass concrete member, There are two methods in the pipe cooling system, which are open loop system and closed loop system. However open loop pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation in the central area of city, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance results of hydration heat control with closed loop pipe cooling system.

  • PDF

The Effects of Scale Growth Inhibition on Water Pipe using Frequency Driver (Frequency Driver를 이용한 냉온수관의 스케일 방지억제효과)

  • Jang, Mi-Jeong;Sung, Il-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.258-266
    • /
    • 2011
  • Scale induced by hardness materials in water must be controled because of it can be result in remarkable damages of pipeline as well as water quality deterioration. Especially hot water system is one of scale management required facility as scale formation can be accelerated by temperature. The scale control performance of frequency driver (FD) was tested instead of existing methods such as chemical, physical and electromagnetic methods which needs chemicals and electric power. Three kinds of pipe coupons were submerged in test water with 500 mg/L of hardness for 33 days and XRD and SEM were analysed for comparing scale formation characteristics of these coupons. Calcite ($CaCO_3$) which came from hardness of water was formed on only cast iron pipe coupon and this coupon showed higher corrosion rate than copper and stainless steel pipe coupon. Hot water circulating system connected cast iron pipe with and without FD was operated with 300 mg/L of hardness water at $50^{\circ}C$ for monitoring of scale formation and water quality with and without FD. XRD showed that FD leaded to magnetite ($Fe_3O_4$) scale which is good scale for preventing corrosion than calcite and SEM image also indicated the scale control effect of FD. Scales of 16% on pipe joint, 14% on pipe length, and 42% on heat exchanger decreased with FD comparing scales of those parts without FD. From the results of water quality, FD reduced crystallization of hardness material without chemical reaction in water and it can indicate that FD is safe and proenvironmental technology for scale reduction.

Analysis for Reducing Vibration Transmitted from the Sea-Water Conveying Pipe to the Hull (선체로 전달되는 해수 이송 배관의 진동 저감 분석)

  • Han, Hyung-Suk;Park, Mi-Yoo;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.145-151
    • /
    • 2008
  • URN(Underwater Radiated Noise) is one of the important performances of the battle ship related to the stealth. The main source of the URN is the structure-borne noise on the hull. And the pipe vibration transmitted to the hull is the main source of the structure-borne noise when the speed of the ship is lower than CIS(Cavitation Inception Speed). In this paper, the vibration isolator(rubber mount) for the pipe system is described in order to reduce the structure-borne noise transmitted to the hull. The vibrations on the sea-water conveying pipes and their supports are measured in order to know how much vibration occurs on those positions. Based on these test results, the improved design of the rubber mount is suggested by the parametric study and is verified numerically with the pipe and hull model.

  • PDF

Analysis of Gradually Varied Flow Considering Relative Depth in Circular Pipe (원형관에서 상대수심을 고려한 점변류 해석)

  • Kim, Minhwan;Park, Junghee;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2007
  • When we use the circular pipes for wastewater and storm water, we should be known the characteristics of the flow for accurate design. To elevate the design accuracy, we want to know the profile of flow. The roughness coefficient in the Manning equation is constant, but in actuality changed with the relative depth in circular pipe. This study was conducted to calculate the relative normal depth in changing the roughness coefficient (named relative roughness coefficient) with the relative depth in the analysis of gradually varied flow in the circular pipe by Newton-Raphson method. We performed the analysis of gradually varied flow using the relative normal depth and the relative roughness coefficient. We presented the 12 flow profiles with the relative depth and the relative roughness coefficient in circular pipe. The flow classification considering relative depth in circular pipe is available to analyse gradually varied flow profiles.

A Similarity of the Velocity Profiles According to Water Depth in Partially Filled Circular Pipe Flows (비만관 상태의 원형관로에서 수위에 따른 속도분포의 상사성)

  • Yoon, Ji-In;Kim, Young-Bae;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.28-32
    • /
    • 2008
  • Contrary to the flow rate in fully filled pipe flows, the flow rate in partially filled pipe flows is significantly influenced by the variation of water level, channel slop, and so on. The major difference in these two flows results from the existence of a free surface. To make it clear, in the present study, a similarity of the velocity profile in a partially filled circular pipe has been investigated according to the water level. A particle image velocimetry (PIV) technique was applied to measure the three-dimensional velocity profiles. As a result, there is found a similarity of the velocity profile near the central region. However, near the side wall, the similarity is broken due to the interaction between the wall and the free surface.

Identifying an Appropriate Analysis Duration for the Principal Component Analysis of Water Pipe Flow Data (상수도 관망 유량관측 자료의 주성분 분석을 위한 분석기간의 설정)

  • Park, Suwan;Jeon, Daehoon;Jung, Soyeon;Kim, Joohwan;Lee, Doojin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.351-361
    • /
    • 2013
  • In this study the Principal Component Analysis (PCA) was applied to flow data in a water distribution pipe system to analyze the relevance between the flow observation dates, which have the outliers of observed night flows, and the maintenance records. The data was obtained from four small size water distribution blocks to which 13 maintenance records such as pipe leak and water meter leak belong. The flow data during four months were used for the analysis. The analysis was carried out to identify an appropriate analysis period for a PCA model for a water distribution block. To facilitate the analyses a computational algorithm was developed. MATLAB was utilized to realize the algorithm as a computer program. As a result, an appropriate PCA period for each of the case study small size water distribution blocks was identified.

Most suitable design method of post-chlorination process in portable water process by using CFD (전산유체를 활용한 정수공정에서 후염소 투입공정 최적설계 방안)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Post-chlorination for disinfection in portable water process is final process. The design factors of post-chlorination are inflow pipe line from tank of filtrated water to cleanwell, injection point of chlorine, appropriate shape of baffle in cleanwell for disinfection efficient improvement. Until now, we did not have the design standard for post-chlorination. we evaluated most suitable design method of post-chlorination process in portable water process by using computational fluid dynamics in this research. We found the result that the pipe to connect the cleanwell should be one. If pipe line split into two or more, uniform distribution of the flow is difficult. Second, optimal injection point of chlorine is the middle of pipe line to connect the cleanwell. Therefore, it is not economical to install chlorine contact basin in cleanwell. Third, the shape of baffle should be designed in order to water flows in one direction. And we found that it is better to design the low number of flow turning.

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF