• Title/Summary/Keyword: water phantom

Search Result 371, Processing Time 0.03 seconds

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

First-Pass Observation using Tailored-RF Gradient Echo (TRFGE) MR Imaging in Cat Brain (자기공명 Tailored-RF 경사자계반향영상법을 이용한 고양이 뇌에서의 First-Pass관찰)

  • 문치웅;노용만
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 1995
  • Recently, a new tailored RF gradient echo (TRFGE) sequence was reported. This technique not only enhances the magnetic susceptibility effect but also allows us to measure local changes in brain oxygenation. In this study, a phantom and cat brain experiments were performed on a 4.7 Tesla BIQSPEC (BRUKER) instrument with a 26 cm gradient system. We have demonstrated that the signal intensity (SI) of the TRFGE sequence varies according to the concentration of susceptibility contrast agent. Three capillary tubes with different concentrations of Gd-DTPA (0.01, 0.05, 0.1 mMOI/l) were placed at the middle of a cylindrical water phantom. Using both TRFGE and conventional gradient echo (CGE) sequences, phantom images of the slices which contain all three tubes were obtained. For the animal experiment, cats were anesthetized and ventilated using halotane (0.5%) and a $N_2O/ O_2$ mixture (2:1), and blood pressure and heart rate were monitored and kept normal. For the observation of tue first pass of Gd- DTPA, imaging was started at t = 0. At t = 8 ~ 12s, 0.2 mMol/Kg Gd-DTPA was manually injected in the femoral vein. The imaging parameters were TRITE = 25/10 msec, flip angle = $30^{\circ}$, FOV = 10cm, image matrix size = $128{\times}128$ with 64 phase encodings and the image data acquisition window was 10 msec. SI-time curves were then obtained from a series of 30 images which were collected at 2 sec intervals using both CGE and TRFGE pulse sequences before, during, and following the contrast injection.

  • PDF

Comparison of CT numbers between cone-beam CT and multi-detector CT (Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구)

  • Kim, Dong-Soo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

Measurement of Photo-Neutron Dose from an 18-MV Medical Linac Using a Foil Activation Method in View of Radiation Protection of Patients

  • Yucel, Haluk;Cobanbas, Ibrahim;Kolbasi, Asuman;Yuksel, Alptug Ozer;Kaya, Vildan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.525-532
    • /
    • 2016
  • High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be $(1.17{\pm}0.06){\times}10^7n/cm^2$ per Gy at the phantom surface in a $20{\times}20cm^2$ X-ray field size. The maximum photo-neutron dose was measured to be $0.67{\pm}0.04$ mSv/Gy at $d_{max}=5cm$ depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of $10{\times}10cm^2$, $15{\times}15cm^2$, and $20{\times}20cm^2$ from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment.

Characteristics of radiographic images acquired with CdTe, CCD and CMOS detectors in skull radiography

  • Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Lopes, Sergio Lucio Pereira de Castro;Haiter-Neto, Francisco;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.339-346
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the image quality, diagnostic efficacy, and radiation dose associated with the use of a cadmium telluride (CdTe) detector, compared to charge-coupled device (CCD) and complementary metal oxide semiconductor(CMOS) detectors. Materials and Methods: Lateral cephalographs of a phantom (type 1) composed of synthetic polymer filled with water and another phantom (type 2) composed of human skull macerated with polymer coating were obtained with CdTe, CCD, and CMOS detectors. Dosimeters placed on the type 2 phantom were used to measure radiation. Noise levels from each image were also measured. McNamara cephalometric analysis was conducted, the dentoskeletal configurations were assessed, and a subjective evaluation of image quality was conducted. Parametric data were compared via 1-way analysis of variance with the Tukey post-hoc test, with a significance level of 5%. Subjective image quality and dentoskeletal configuration were described qualitatively. Results: A statistically significant difference was found among the images obtained with the 3 detectors(P<0.05), with the lowest noise level observed among the images obtained with the CdTe detector and a higher subjective preference demonstrated for those images. For the cephalometric analyses, no significant difference (P>0.05) was observed, and perfect agreement was seen with regard to the classifications obtained from the images acquired using the 3 detectors. The radiation dose associated with the CMOS detector was higher than the doses associated with the CCD (P<0.05) and CdTe detectors(P<0.05). Conclusion: Considering the evaluated parameters, the CdTe detector is recommended for use in clinical practice.

Proposal of CT Simulator Quality Assurance Items (전산화단층 모의치료장치의 정도관리 항목 제안)

  • Kim, Yon-Lae;Yoon, Young-Woo;Jung, Jae-Yong;Lee, Jeong-Woo;Chung, Jin-Beom
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.367-373
    • /
    • 2021
  • A quality assurance of computed tomography(CT) have done seven items that were water attenuation coefficient, noise, homogeneity, spatial resolution, contrast resolution, slice thickness, artifact using by standard phantom. But there is no quality assurance items and methods for CT simulator at domestic institutions yet. Therefore the study aimed to access the CT dose index(CTDI), table tilting, image distortion, laser accuracy, table movement accuracy and CT seven items for CT simulator quality assurance. The CTDI at the center of the head phantom was 0.81 for 80 kVp, 1.55 for 100 kVp, 2.50 for 120 mm, 0.22 for 80 kVp at the center of the body phantom, 0.469 for 100 kVp, and 0.81 for 120 kVp. The table tilting was within the tolerance range of ±1.0° or less. Image distortion had 1 mm distortion in the left and right images based on the center, and the laser accuracy was measured within ±2 mm tolerance. The purpose of this study is to improve the quality assurance items suitable for the current situation in Korea in order to protect the normal tissues during the radiation treatment process and manage the CT simulator that is implemented to find the location of the tumor more clearly. In order to improve the accuracy of the CT simulator when looking at the results, the error range of each item should be small. It is hoped that the quality assurance items of the CT simulator will be improved by suggesting the quality assurance direction of the CT simulator in this study, and the results of radiation therapy will also improve.

Evaluation of Artifacts by Dental Metal Prostheses and Implants on PET/CT Images: Phantom and Clinical Studies (PET/CT 영상에서의 치과재료에 의한 인공물에 관한 연구)

  • Bahn, Young-Kag;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2010
  • Purpose: The X-ray attenuation coefficient based on CT images is used for attenuation correction in PET/CT. The polychromatic X-ray beam can introduce beam-hardening artifact on CT images. The aims of the study were to evaluate the effect of dental metal prostheses in phantom and patients on apparent tracer activity measured with PET/CT when using CT attenuation correction. Materials and Methods: 40 normal patients (mean age $54{\pm}12$) was scanned between Jan and Feb 2010. NEMA(National Electrical Manufactures Association) PET $Phantom^{TM}$ (NU2-1994) was filled with $^{18}F$-FDG injected into the water that insert implant and metal prostheses dental cast. Region of interest were drawn in non-artifact region, bright steak artifact region and dark streak artifact region on the same transaxial CT and PET slices. Patients and phantom with dental metal prostheses and dental implant were evaluated the change rate of CT Number and $SUV_{mean}$ in PET/CT. A paired t-test was performed to compare the ratio and the difference of the calculated values. Results: In patients with dental metal prostheses, $SUV_{mean}$ was reduced 19.64% (p<0.05) in the non-steak artifact region than the brightstreak artifact region whereas was increased 90.1% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental metal prostheses, $SUV_{mean}$ was reduced 18.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 18.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In patients with dental implant, $SUV_{mean}$ was increased 19.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 96.62% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental implant, $SUV_{mean}$ was increased 14.4% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 7.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. Conclusion: When CT is used for attenuation correction in patients with dental metal prostheses, 19.1% reduced $SUV_{mean}$ is anticipated in the dark streak artifact region on CT images. The dark streak artifacts of CT by dental metal prostheses may cause false negative finding in PET/CT. We recommend that the non-attenuation corrected PET images also be evaluated for clinical use.

  • PDF

Dosimetric Measurement for 4MV X-Ray Linear Accelerator with Asymmetric Collimator System (4MV 선형가속기에서의 비대칭 콜리메이터의 선량측정)

  • 이병용;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 1990
  • Dosimetric measurement of an asymmetric collimator system was performed, using water phantom system for 4MV X-ray linear accelerator. We have studied the system of dose calculation with those measured result. We compared the field size factor and the percent depth dose for asymmetric collimator to those factor for symmetric fields. The results show that we can use symmetric field data directly within 1% error, if we consider the off axis ratio(OAR).

  • PDF

Development of Microvolume LET Counter for Therapeutic Heavy Ion Beam

  • Hirai, Masaaki;Kanai, Tatsuaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.231-232
    • /
    • 2002
  • We have been developing microvolume LET counter in order to measure the three-dimensional LET distribution of the therapeutic heavy ion radiation volumes in the water phantom. With help of the technique of cathode induced carhge readout, this detector has a rectangular (box-shape) sensitive volume of which size is about 1 mm$^2$ and 2mm (depth).

  • PDF