• Title/Summary/Keyword: water permeation flux

Search Result 117, Processing Time 0.022 seconds

Pervaporation of TFEA/MA/Water Mixtures through PVA Composite Membranes

  • Ahn, Sang-Man;Kim, Jeong-Hoon;Lee, Yong-Taek;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.133-147
    • /
    • 2005
  • In order to investigate applicability for 2,2,2-trifluoroethyl methacrylate (TFEMA) produced by esterification of 2,2,2-trifluoroethanol(TFEA) and methacrylic acid(MA) using pervaporation membrane, poly(vinyl alcohol) (PVA) composite membranes were prepared with glutaraldehyde(GA) onto porous polyethersulfone(PES) support. The degree of crosslinking and thickness of PVA coating layer were analyzed by swelling test and SEM(scanning electron microscopy), respectively. Pervaporation test was done with two feed mixures; TFEA/water, MA/water. The pervaporation data were obtained as a function of content of crosslinking agent, feed composition, and operating temperature, respectively. In case of TFEA-water(90/10 wt%) feed mixture at $80^{\circ}C$, the optimized membrane showed the high permeation flux of 1.5 $kg/m^2hr$ and separation factor of 320. In case of MA-water(90/10 wt%) feed mixture, the membranealso showed high permeation flux of 2.3 $kg/m^2hr$ and separation factor of 740 in same conditions.

  • PDF

Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane (하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

Effects of Glycerin and PEG 400 in Donor and Receptor Solutions upon Skin Permeation of Drug (In vitro 경피흡수 실험시 Donor와 Receptor용액중의 글리세린과 PEG 400이 약물의 경피투과도에 미치는 영향)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.99-103
    • /
    • 1996
  • Effects of glycerin and PEG 400 in donor and receptor solutions upon skin permeation of drug were investigated. Deoxycortisone was used as a model compound. In vitro skin permeation study with freshly excised hairless mouse skin was performed and the steady-state skin permeation rates of the drug were determined in different fractions of glycerin or PEG 400 in donor and receptor solutions. Glycerin in donor solution didn't show any effect on the skin permeation rate of deoxycortisone. However glycerin in receptor solution showed significant effect on the skin permeation rate of the drug. In glycerin, there's a critical concentration for balancing hydration and dehydration of skin. At low concentration, less than 20 %, glycerin showed the enhancement of the flux due to the hydration effect of skin. At high concentration, more than 30 %, glycerin retard the permeation rate which might be due to the dehydration effect on the dermis layer. Since dermis has more water content than the stratum corneum, the steady state skin permeation rates were more influenced when glycerin was in receptor solution than that of in donor solution. PEG 400 aqueous solutions doesn't affect the steady state permeation rate of deoxycortisone significantly.

  • PDF

Effect of Hydraulic Pressure on Organic Fouling in Pressure Retarded Osmosis (PRO) Process (압력지연삼투 (PRO) 공정에서 유도용액에서의 압력이 유기물 파울링에 미치는 영향)

  • Suh, Dongwoo;Yoon, Hongsik;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.133-138
    • /
    • 2015
  • Pressure retarded osmosis (PRO) process is one of membrane processes for harvesting renewable energy by using salinity difference between feed and draw solutions. Power is generated by permeation flux multiplied by hydraulic pressure in draw side. Membrane fouling phenomena in PRO process is presumed to be less sever, but it is inevitable. Membrane fouling in PRO process decreases water permeation through membrane, resulting in significant power production decline. This study intended to investigate the effect of hydraulic pressure in PRO process on alginate induced organic fouling as high and low hydraulic pressures (6.5 bar and 12 bar) were applied for 24 h under the same initial water flux. In addition, organic fouling in draw side from the presence of foulant (sodium alginate) in draw solution was examined. As major results, hydraulic pressure was found to be not a significant factor affecting in PRO organic fouling as long as the same initial water flux is maintained, inidicating that operating PRO process with high hydraulic pressure for efficient energy harvesting will not cause severe organic fouling. In addition, flux decline was negligible from the presence of organic foulant in draw side.

Removal of Volatile Organic Compounds from Water Using PU/PDMS-PTFE Composite Membranes by Vapor Permeation Separation Process (PU/PDMS-PTFE 복합막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • Rhim Ji Won;Cheon Se Won;Yun Tae Ihl;Shin Hyun Su;Kim Baek Ahm;Chung Rae Ick
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • Polyurethane-polysiloxanes (PU/PDMS) was synthesized using 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) to overcome the weakness to the organic chemicals. The composite membranes were prepared onto porous poly(tetrafluoroethylene) (PTFE) supports. In vapor permeation experiments, the flux increased with increasing operating temperatures and feed concentrations while the separation factors showed the opposite trend, so-called 'trade-off'. In this study, the effect of the flux on the operating temperatures was not severe since the content of the soft segments is fairly higher than that of the hard segments. The composite membrane type of PU/PDMS maintained high flux and separation factor as well when comparing with the dense type membranes.

Rat Skin Permeation of Diclofenac and its Prodrugs (디클로페낙 프로드럭들의 흰쥐 피부 투과)

  • Doh, Hea-Jeong;Cho, Won-Jea;Yong, Chul-Soon;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • Various alkyl ester prodrugs of diclofenac were synthesized in order to investigate the relationship between their skin permeation characteristics and physicochemical properties. Solubility in various vehicles was measured at room temperature. 1-Octanol/water partition coefficients (Log P) and capacity factors (k') were measured to determine the lipophilicity of the prodrugs. Stability of prodrugs in the skin extract and homogenate was also investigated before conducting the skin permeation studies. Increases in the Log P and capacity factor values were observed when alkyl esters of diclofenac were prepared. Since the aqueous solubility of the prodrugs was not high enough, they were saturated in propylene glycol (PG) for skin permeation studies. Prodrugs were rapidly metabolized to diclofenac, both in skin homogenate and in dermal extract of skin. The skin permeation rate of alkyl ester prodrugs was significantly higher than diclofenac with shorter lag time. Moreover, a parabolic relationship was observed between the permeation rate and the log P values of prodrugs, and the maximum flux was achieved at a log P value of around 4.0.

  • PDF

Pervaporative Recovery of Bio-butanol through Dense- and Composite-type PDMS Membranes (PDMS막을 이용한 바이오 부탄올 분리정제와 투과증발 특성에 관한 연구)

  • Kim, Jeong-Hoon;Ryu, Bi-Ho;Chang, Bong-Jun;Kim, Woo-Nyon
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.157-164
    • /
    • 2009
  • Bio-butanol recovery by pervaporation was performed with dense and composite polydimethylsiloxane (PDMS) membranes. The pervaporative behavior of the membranes was investigated as a function of operation temperature $(20{\sim}40^{\circ}C)$ and membrane thickness $(100{\sim}1{\mu}m)$ using a series of aqueous BtOH model solutions $(1{\sim}5wt%)$. With the increment of the BtOH concentration in feed, the Butanol concentration in permeate, pervaporation selectivity of Butanol over water and Butanol permeation flux increased. As the operating temperature of feed solutions increased, the BtOH concentration in permeate, pervaporation selectivity and permeation flux increased markedly. As the thickness of the PDMS membrane decreased, permeation flux increased but pervaporation selectivity decreased. These results were explained in terms of high solubility and low diffusion resistance of BtOH over water toward hydrophobic and rubbery PDMS membranes.

Preparation of PVDF/PEI double-layer composite hollow fiber membranes for enhancing tensile strength of PVDF membranes

  • Yuan, Jun-Gui;Shi, Bao-Li;Ji, Ling-Yun
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • Polyvinylidene fluoride (PVDF) hollow fiber membrane is widely used for water treatment. However, the weak mechanical strength of PVDF limits its application. To enhance its tensile strength, a double-layer composite hollow fiber membrane, with PVDF and polyetherimide as the external and inner layers, respectively, was successfully prepared through phase inversion technique. The effects of additive content, air gap distance, N,N-dimethyl-acetamide content in the inner core liquid, and the temperature of external coagulation bath on the membrane structure, permeation flux, rejection, tensile strength, and porosity were determined. Experimental results showed that the optimum preparation conditions for the double-layer composite hollow fiber membrane were as follows: PEG-400 and PEG-600, 5 wt%; air gap distance, 10 cm; inner core liquid and the external coagulation bath should be water; and temperature of the external coagulation bath, 40 C. A single layer PVDF hollow fiber membrane (without PEI layer) was also prepared under optimum conditions. The double-layer composite membrane remarkably improved the tensile strength compared with the single-layer PVDF hollow fiber membrane. The permeation flux, rejection, and porosity were also slightly enhanced. High-tensile strength hollow fiber PVDF ultrafiltration membrane can be fabricated using the proposed technique.

Concentration of Citrus Essence Aroma Model Solution by Pervaporation (투과증발법을 이용한 감귤 Essence Aroma 모델액의 농축)

  • Lee Yong-Taek;Park Joong-Won;Shin Dong-Ho
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • This is the research about the concentration of trace citrus flavor components in water by pervaporation. We have investigated the permeation characteristics depending on the material and formation of membranes using four siloxane-based polymer composite membranes. We have also chosen the optimal membrane and investigated the permeation characteristics depending on the feed temperature, concentration and flow rate. And then it has been analyzed by using resistance-in series model. In the permeation experiment of citrus essence aroma model solution through the four siloxane-based polymer composite membranes, PVDF/POMS membranes have showed the best flavor flux and enrichment factor. As a result of the permeation experiment depending on the feed temperature, concentration and flow rate, we can find that as the feed temperature and concentration increase, the flavor flux increases while the enrichment factor decreases. And the flavor flux and enrichment factor increased as the flow rate increases.

Pervaporation of Fluoroethanol/Water Mixtures through Commercial Poly(vinyl alcohol) Membranes (상용화된 폴리비닐알콜막을 이용한 불화에탄올/물의 투과증발 특성연구)

  • Lee Soo-Bok;Ahn Sang-Man;Choi Seung-Hak;Kim Jeong-Hoon;Lee Yong-Taek
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.258-262
    • /
    • 2004
  • Trifluoroethyl methacrylate (TFEMA) is used in the preparation of water-repellant paints and optical fiber clading materials, and is manufactured by esterification reaction of trifluoroethanol (TFEA) and methacrylic acid (MA). To estimate the applicability of a pervaporation membrane for the esterification TFEMA esterification, the basic pervaporation properties for TFEA/water mixture were determined using a commercial poly(vinyl alcohol) membrane (GFT Membrane $Pervap^{\circledR}1005$). The effect of TFEA concentration in feed solution and operating temperature on the pervaporation properties was determined. The total permeation flux decreased with increasing TFEA concentration from 90 to 99 wt%, but the separation factor of TFEA/water showed maximum values at 95 wt% TFEA concentration. With increasing feed temperatures from 50 to 8$0^{\circ}C$, the permeation flux and separation factor increased. Higher separation factors and permeation fluxes were observed at 8$0^{\circ}C$ of feed temperature. This pervaporation performance confirmed that the commercial pervaporation membrane could be successfully applied to esterification of TFEMA.