• Title/Summary/Keyword: water permeate flux

Search Result 201, Processing Time 0.031 seconds

Wastewater Recycling from Electroless Printed Circuit Board Plating Process Using Membranes (분리막을 이용한 무전해 PCB 도금 폐수의 재활용)

  • 이동훈;김래현;정건용
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Membrane process was investigated to recover process water and valuable gold from washing water of electroless PCB plating processes. The filtration experiments were carried out using not only a RO membrane test cell to determine suitable membrane for washing water but also spiral wound membrane modules of nanofiltration and reverse osmosis for scale-up. At first, RO-TL(tap water, low pressure), RO-BL(brackish water, low pressure) and RO-normal(for water purifier) sheet membranes made by Saehan Co. were tested, and the performance of RO-TL membrane showed most suitable f3r recovery of soft etching, catalyst and Ni washing waters. As a result of RO test cell, the experiments for scale-up were carried out using RO-TL modules far water purifier at 7bar and $25^{\circ}C $The permeate flux fur Au washing water was about 30 LMH, but Au rejection was less than 80%. The permeate fluxes for Pd, Ni and soft etching washing water were about 22, 17 and 10 LMH, respectively. The Pd, Ni and Cu rejections showed more than 85, 97 and 98% respectively. The nanofiltration module for water purifier was introduced to recover Au selectively from Au, Ni and Cu ions in Au washing water. Most of Ni and Cu ions in the feed washing water were removed, and only Au ion was existed 81.9% in the permeate. Furthermore, Au ion in the permeate was concentrated and recovered by RO-TL membrane module. Finally, Au was also able to recover effectively by using 4 inch diameter spiral wound modules of NF and RO-TL membranes, in series.

A Study on Flux Efficiency on Membrane for Water Reclamination according to Coagulations (하수처리수 재이용을 위한 막분리 공정시 응집조건에 따른 투과효율 변화에 관한 연구)

  • Jung, Jin-Hee;Jang, Sung-Ho;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2011
  • The objectives of this research are to investigate the proper coagulation conditions which are a type and doses of coagulants, mixing conditions (velocity gradients and mixing times), pH and so on through Jar-test, to evaluate the flux variations, permeate, backwashing according to characteristics of pretreatment of the wastewater by means of MF membranes for river maintenance water reuse. The effluent water from B-city K-sewage treatment plant are used for this research. Turbidity and suspended solids(SS) are 14.2 NTU and 10.4 mg/L respectively. This condition causes fouling for membrane process. The flux decline could be reduced when coagulation pretreatment was carried out. Optimal coagulations PAC which are commonly used in the sewage treatment plant was observed in this research. The results indicate that an optimal coagulation dose and pH are 80 ppm and pH of 7 respectively, but coagulation efficiency was lower at strong acid or strong base. Results showed that continuous and steady operations in membrane separation process by means of the effective removal of organic matter and turbidity with coagulation pretreatment of sewage secondary effluent were achieved.

Effects of various foulants on flux changes in membrane distillation process (막증류 공정에서 오염 인자가 플럭스 변화에 미치는 영향)

  • Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • The effects of dissolved inorganic and organic matter in seawater and the characteristics of fouling on the membrane surface were investigated within membrane distillation (MD) process. The changes of the membrane flux of PE and PVDF hollow fiber membranes under natural and synthetic seawater were compared with given variances of temperature. The flux of both membranes under the synthetic seawater, without any organic matter, were higher than that of the natural seawater, indicating the organic fouling on the membrane surface. The surface of the membrane was analyzed using scanning electron microscope (SEM) to examine the fouling. The experiment with organics has shown the formation of thin film over the membrane surface, while the experiment with inorganics has shown only the formation of inorganic crystals. The results indicated the organic matter as the major foulants and that the organics affected the formation of the crystals. Permeate water conductivity of all conditions verified the quality of the water to be better if not similar to that of RO.

Long Term Evaluation of UF Membrane process using River-bed Water (복류수를 이용한 한외여과공정의 장기운전 평가)

  • Kim, Chung H.;Lim, Jae L.;Kang, Suk H.;Kim, Su H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.429-436
    • /
    • 2008
  • Membrane system has been increasingly considered as a safe and cost-effective water treatment process especially in case of small scale water works. This research is a basis of membrane application in water works through a long period test with obtaining operation skills and evaluation of water quality and cost competitiveness. For the research, the UF membrane system was installed in small water treatment plant that uses river-bed water as raw water. The system was consisted of 2 stage membrane and operated in constant flow mode (Flux: 1.5, 1.0, 0.9, 0.6). In each different flux condition, TMP trends were showed better results at lower flux condition. And through the high flux condition test, it is certified that membrane system could deal with breakdown of one stage. Water quality of permeate was satisfied the water quality standards especially turbidity. To know what mainly causes fouling on membrane, the test by membrane with several cleaning agents and EDX analysis have done in lab. Through the tests, ferrous concentration in raw water, backwashing water and membrane surface etc. was high and it causes fouling inside and outside of membrane. So acid cleaning using organic acid such as oxalic acid is necessary in Chemical in Place (CIP). At the economical aspect the electrical cost of membrane system is higher than that of slow sand filtration but labor cost can be reduced by automation. However, the use of labor should be determined considering effectiveness and stability of operation. Because during the operation, there are several breakdown such as electrical shock by lightning, water drop in summer, etc.

Flux Decline and Fouling Mechanism of Si Colloidal Solution During the Ultra-Filtration (환외여과에 있어서 Si 콜로이드 용액의 투과유속 감소 및 오염특성)

  • Nam, Suk-Tae;Jeon, Jae-Hong;Lee, Seok-Ki;Choi, Ho-Sang
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.25-35
    • /
    • 1999
  • Behavior of permeate flux decline was examined through the hollow fiber membrane in ultrafiltration system for Si colloidal solution. Flux decline with time was due to the growth of Si cake deposited on the membrane surface and the pore blocking by Si particles for the hollow fiber membrane. At the pseudo steady state of operation, the permeate flux of dead-end flow was 60 % to that of the cross flow. The ratio of permeate flux to the pure water flux, $J/J_w$, decreased with increasing the trans-membrane pressure, from 64.2 % for $0.5kg_f/cm^2$ to 45.7 % for $2.0kg_f/cm^2$. When the feed flow rate was 3 L/min, the pore blocking model was dominant at the initial period of filtration and was followed by the cake filtration model. And with increasing the feed flow rate from 1 L/min to 3 L/min, $R_c$ was $1.79{\times}10^{12}{\sim}2.34{\times}10^{12}m^{-1}$ which was the about 40 % decreased value to that of the 1 L/min while $R_p$ was not changed and was $1.71{\times}10^{12}m^{-1}$ approximately.

  • PDF

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Multi-channels Ceramic Microfiltration and Activated Carbon Adsorption (다채널 세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • In this study, we used multi-channels ceramic membrane having larger permeate volume per unit time rather than tubular membrane. The hybrid process for advanced drinking water treatment was composed of granular activated carbons (GAC) packing between module inside and outside of multi-channels microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Kaolin concentration was fixed at 30mg/L and humic acid was changed as $2{\sim}10\;mg/L$ to inspect effect of organic matters. As a result, both resistance of membrane fouling ($R_f$) and permeate flux (J) were highly influenced by concentration of humic acid. Also, in result of water-back-flushing period (FT) effect, the shorter FT was the more effective to reduce membrane fouling and to enhance permeate flux because of frequent water-back-flushing. However, the optimal FT condition was 8 min when operating costs were considered. Then, the hybrid process using multi-channels ceramic membrane and GAC was applied to lake water treatment. As a result, average treatment efficiencies in our experiment using the hybrid process were 98.02% for turbidity, 75.64% for $UV_{254}$ absorbance, 7.18% for TDS and 84.73% for $COD_{Mn}$.

Vapor Permeation of Aqueous Ester Solutions Through Surface-modified Alumina Membrane (표면 개질한 알루미나막을 통한 ester 수용액의 증기 투과)

  • 오한기;송근호;이광래
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.186-191
    • /
    • 2000
  • The recovery of three ethyl esters (aroma model compounds; ethyl acetate, ethyl propionate. ethyl butyrate) from aqueous solutions was studied for vapor permeation with surface-modified hydrophobic alumina membrane, Although the driving force of ethyl butyrate is the highest, the ethyl butyrate concentration in permeate is lower than those of propionate and acetate. Since the solubility of aroma compounds for water is very low, phase separation occurred in permeate, and we could obtain pure ethyl esters. The experimental results showed that the porous hydrophobic alumina membrane had high selectivity and permeation flux on the ester-model compounds.

  • PDF

Synthesis and Characterization of Copoly(amide-imide) Derivatives and Ultrafiltration Membrane Performances II - Permeation Properties of Copoly(amide-imide)s Ultrafiltration Membranes -

  • Jeon, Jong- young;Kim, Jong-hp
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.24-31
    • /
    • 2001
  • Ultrafiltration membranes base on copoly(amide-imide) derivatives were prepared by the phase inversion method and the factors determining the permeation characteristics of membrane were investigated. The permeation behavior was observed by the relative ratio of permeate flux (J$\_$t/)/pure water flux (J$\_$o/). The characteristics through membrane were measured using aqueous solution of poly(ethyleneglycol) (MW 2.0$\times$10$\^$4/) over a temperature range of 10∼90$\^{C}$. With increasing the operating temperature, the relative ratio of flux became high. All the membranes had good chemical stability. Copoly(amide-imide) membranes having various Permeation properties could be obtained. Further, it was proved that the membrane performances could be determined from the preparation conditions as well as various operating conditions.

  • PDF

Lake Water Treatment using Ceramic Ultrafiltration Membrane System with Periodic Water-backflushing

  • Park, Jin-Yong;Kyung, Gee-Yong;Han, Song-Hee;Kim, Hyun-Woo;Lee, Hyuk-Chan
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • We treated lake water by ceramic ultrafiltration membranes and found the optimal backflushing period and trans-membrane pressure (TMP) of periodic water-backflushing system. The optimal filtration time interval at fixed BT = 3 sec was 30 for A002 membrane in all viewpoints of $J/J_0,\;R_f$, and $V_T$, and we could acquire the highest $V_T$ value in the membranes used here. However, the highest $V_T$ was acquired at FT = 60 sec for M9, and at FT = 90 sec for C005 membrane. Then the lower TMP reduced the membrane fouling during filtration of lake water, and could maintain the higher permeate flux compared with the initial flux. However, the largest value $V_T$ could be obtained at the highest TMP condition for M9 membrane at fixed FT = 60 sec and BT = 3 sec. The quality of treated water in our UF ceramic system was Turbidity = $0.20{\sim}4.88NTU$, $COD_{Mn} = 0.00{\sim}2.58 mg/L$, $TDS = l8{\sim}71 mg/L$, and $NH_3-N = 0.004{\sim}1.689 mg/L$.

Optimization of Separation Process of Bioflavonoids and Dietary Fibers from Tangerine Peels using Hollow Fiber Membrane (중공사 막을 이용한 감귤 과피 bioflavonoids 분리 및 식이 섬유 회수 공정 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 1998
  • Tangerine peel is mostly discarded as waste in citrus processing. However, tangerine peel contains besides dietary fibers bioflavonoids such as naringin and hesperidin which act as antimicrobials and blood pressure depressants, respectively. A continuous membrane separation process was optimized for the production of bioflavonoids relative to feed flow rate, transmembrane pressure, temperature, and pH. The tangerine peel was blended with 7.5 times water volume and the extract was prefiltered through a prefiltration system. The prefiltered extract was ultrafiltered in a hollow fiber membrane system. The flux and feed flow rate didn't show any apparent correlation, but we could observe a mass-transfer controlled region of over 8 psi. When temperature increased from $9^{\circ}C\;to\;25^{\circ}C$, the flux increased about $10\;liters/m^2/min\;(LMH)$ but between $25^{\circ}C\;and\;33^{\circ}C$, the flux increased only 2 LMH. At every transmembrane pressure, the flux of pH 4.8 was the most highest and the flux at pH 3.0 was lower than that of pH 6.0, 7.0, or 9.0. Therefore, the optimum operating conditions were 49.3 L/hr. 10 psi, $25^{\circ}C$, and pH 4.8. Under the optimum conditions, the flux gradually decreased and finally reached a steady-state after 1 hr 50 min. The amount of dietary fibers in 1.0 g retentate in each separation step was analyzed and bioflavonoids concentration in each permeate was measured. The contents of total dietary fiber in the 170 mesh retentate and soluble dietary fiber in the prefiltered retentate were the highest. Naringin and hesperidin concentration in the permeate were $0.45{\sim}0.65\;mg/g\;and\;5.15{\sim}6.86\;mg/g$ respectively, being $15{\sim}22$ times and $79{\sim}93$ times higher than those in the tangerine peel. Therefore, it can be said that PM 10 hollow fiber membrane separation system may be a very effective method for the recovery of bioflavonoids from tangerine peel.

  • PDF