• Title/Summary/Keyword: water permeate flux

Search Result 201, Processing Time 0.026 seconds

A Study on the Opimization of Process and Operation Condition for Membrane System in Tap Water Treatment (분리막을 이용한 정수처리 System에서 처리공정 및 운전조건의 최적화에 관한연구)

  • 오중교
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.193-201
    • /
    • 1999
  • The object of study were the development of membrane process and the optimization of operation condition for membrane system, which was used the pre-treatment system of tap water treatment in steady of conventional process such as coagulation, sedimentation. The higher steady flux is very important factor, by a suitable pre-treatment and optimization of operating condition such as fouling control, crossflow and backwashing method, in membrane system. So, we were observed the effect of flux decline for membrane used by 4 type ultrafiltration(UF) membrane pre-treatment process, and optimized the operation condition of filtration system under various MWCO(Molecular weight cut-off), operation pressure, linear velocity and temperature to maintain higher flux. From these experiment, we were identified that UF process showed a slower flux decline rate and a higher flux recovery than microfiltration(MF) membrane. The water quality of UF permeate was better than that of MF, and was not effected pre-treatment process. In the operation condition, the rate of flux decline was diminished by a higher linear velocity and operation temperature, lower pressure.

  • PDF

Sensitivity analysis and Taguchi application in vacuum membrane distillation

  • Upadhyaya, Sushant;Singh, Kailash;Chaurasia, Satyendra Prasad;Baghel, Rakesh;Singh, Jitendra Kumar;Dohare, Rajeev Kumar
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.435-445
    • /
    • 2018
  • In this work, desalination experiments were performed on vacuum membrane distillation (VMD). Process parameters such as feed flow rate, vacuum degree on permeate side, feed bulk temperature and feed salt concentration were optimized using sensitivity analysis and Taguchi method. The optimum values of process parameters were found to be 2 lpm of feed flow rate, $60^{\circ}C$ of feed bulk temperature, 5.5 kPa of permeate-side pressure and 5000 ppm of salt concentration. The permeate flux at these conditions was obtained as $26.6kg/m^2{\cdot}hr$. The rejection of salt in permeate was found to be 99.7%. The percent contribution of various process parameters using ANOVA results indicated that the most important parameter is feed bulk temperature with its contribution of 95%. The ANOVA results indicate that the percent contribution of permeate pressure gets increased to 5.384% in the range of 2 to 7 kPa as compared to 0.045% in the range of 5.5 to 7 kPa.

Effects of slip velocity on air gap membrane distillation process

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.57-71
    • /
    • 2014
  • In this study, a theoretical model for the transport phenomena in an Air Gap Membrane Distillation used for desalination was developed. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The rarefaction impacts are taken into consideration showing their effects on process parameters particularly permeate flow and thermal efficiency. The theoretical model was validated with available data and was found in good agreement especially when the slip condition is introduced. The rarefaction impact was found considerable inducing an increase in the permeate flux and the thermal efficiency.

Water Reuse of Sewage Discharge Water Using Fertilizer Drawn Forward Osmosis - Evaluating the Performance of Draw Solution - (비료 유도용액의 정삼투를 이용한 하수처리수의 재이용 - 유도용액의 성능 평가 -)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.108-115
    • /
    • 2016
  • This study is to evaluate the performance of draw solutions in the water reuse of sewage discharge water using fertilizer drawn forward osmosis. Feed water used in all experiments was the effluent from secondary sedimentation tank in activated sludge process. Considering osmotic pressure, solubility, and pH, $NH_4H_2PO_4$, KCl, $KNO_3$, $NH_4Cl$, $(NH_4)_2HPO_4$, $NH_4NO_3$, $NH_4HCO_3$, and $KHCO_3$ were screened from a comprehensive lists of fertilizer. Their performances were evaluated in terms of water permeate flux and reverse solute flux. KCl showed the highest average water flux followed by $NH_4Cl$, $NH_4NO_3$, $KNO_3$, $KHCO_3$, $NH_4HCO_3$, $NH_4H_2PO_4$, and $(NH_4)_2HPO_4$. Using KCl as draw solution, the average water permeate flux was 13.49 LMH. There was no big difference in osmotic pressure between the effluent from secondary sedimentation tank and deionized water. $NH_4H_2PO_4$ showed the lowest reverse solute flux followed by $NH_4Cl$, $(NH_4)_2HPO_4$, $KNO_3$, $NH_4HCO_3$, and $NH_4NO_3$. Using $NH_4H_2PO_4$ as draw solution, the reverse solute flux was $4.96{\times}10^{-3}mmol/m^2{\cdot}sec$.

Application of Coagulation-UF Hybrid Membrane Process for Reuse of Secondary Effluent (하수 2차 처리수 재이용을 위한 hybrid 응집-UF 막분리 공정의 적용)

  • Lee, Chul-Woo;Shon, Jung-Ki;Shon, In-Shik;Han, Seung-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.605-612
    • /
    • 2005
  • The objective of this study was to evaluate the factors affecting the optimization of coagulation hybrid UF membrane processes for the reuse of secondary effluent from sewage treatment plant. The experimental results obtained from the UF membrane process showed that organic colloids in the size range of $0.2{\mu}m{\sim}1.0{\mu}m$ caused the most substantial influence on the fouling of UF membrane. When using a coagulation pretreatment to UF membrane, alum dosage of 50mg/L resulted in the least reduction in membrane permeate flux. Also, for the rapid mixing process, in-line mixer type was more efficient for organic removal than back mixer type. Therefore, it may be concluded that coagulation-UF hybrid membrane process comparing to UF alone process showed not only higher removal efficiency of organic matter, but also substantial improvement of permeate flux of UF membrane.

Performance Evaluation of MF Membrane Filtration Pilot System Associated with Pre Coagulation-Sedimentation with Iron-Based Coagulant and Chlorination Treatment (철염계 응집제를 사용한 전응집침전, 전염소처리와 PVDF 재질의 정밀여과 막을 조합한 막 여과 정수처리시스템 평가에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Yoshimasa, Watanabe;Choi, Yongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.588-597
    • /
    • 2004
  • In this research, we investigated the variation of transmembrane pressure and permeate water quality with pre coagulation and sedimentation with iron based coagulant and chlorination of feed water for PVDF (polyvinylidene fluoride) based MF membrane filtration. NaCIO was fed to the membrane module with dosage of 0.5mg/L and maintained during filtration. To observe the effect of raw water, three types of raw and processed waters, including river surface water, coagulated water and coagulated-settled water, were applied. In case of river surface water, the transmembrane pressure increased drastically in 500 hours of operation. On the contrary, no significant increase in transmembrane pressure was observed for 1,200 hours of operation for coagulated water and coagulated-settled waters. The turbidity of permeate was lower than a detection limit of equipment for all raw waters. The removal efficiency of humic substances of coagulated water and coagulated-settled water was approximate ten times of that of surface river water. And, the removal efficiency of TOC and DOC was approximate two times of that of surface river water. From the results of plant operation, stable operation was maintained at $0.9m^3/m^2{\cdot}day$ filtration flux through the combination of pre-coagulation and pre-chlorination. However, the water quality of permeate was the best when pre-coagulation-sedimentation process was combined with pre-chlorination.

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).

Removal of VOCs from Water by Vapor Permeation through PU/PDMS Membrane (PU/PDMS 막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • 임지원;남상용;김영진;천세원
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2004
  • PU/PDMS(Poly urethane/poly(dimethylsiloxane ) membranes were prepared to enhance chemical resistance over VOCs from 4,4'-diphenylmethane diisocyanate (MDI), poly(dimethylsiloxane) (PDHS). Swelling characteristics and vapor permeation performance of toluene, 1,2-dichloroethane, hexane through PU/PDMS membrane with various feed VOCs concentration were investigated. Swelling ratio of VOCs showed tendency of Toluene > 1,2-dichloroethane > hexane. Fiux of toluene and 1,2-dichloroethane increased with increasing fled concentration while the flux of hexane maintained with increasing feed. VOCs concentration in permeate maintained 50 wt% oi concentration due to high affinity of PU/PDHS membranes to VOCs.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.

Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions (중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가)

  • Kim, Bongchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.