• 제목/요약/키워드: water length effect

Search Result 816, Processing Time 0.029 seconds

A Fundamental Study on the Effect to Build up a Vegetation Strip at Stream Confluence by Using Reed Mat (하천합류부에서 갈대매트를 이용한 하천식생대 조성에 대한 기초적 연구)

  • Chung, Kyung-Jin;Kim, Mi-Kyeong;An, Won-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.62-73
    • /
    • 2003
  • The study was to apply a mat style reed planting method at confluence to improve plants growth conditions by relaxing disturbed topographical base due to water flow and was intended to review the effect to build up a vegetation strip by monitoring process after the construction. First off, We've attempted to construct reed mats on selected sites as confluences of Tan and Gaehwa stream and then examined and analyzed characteristics of soil and vegetation community. As the results of the examination, the soil texture was proven to be a mix of sand and loamy sand and be 6.3 ~ 7.0 soil pH. In addition, it contained 1.0 ~ 4.6% of organic matter, 0.04 ~ 0.22% of T-N and 27.8 ~ 41.2% of water content. For its vegetation structure, the Tan stream confluence was first actually a point bar without plants prior to the construction but 8 kinds of hygrophytes including Persicaria hydropiper and 9 kinds of terrestrial plants such as Potentilla supina, Artemisia annua, and Alopecurus aequalis var. amurensis. On the other hand, the Gaehwa stream confluence contained 6 kinds of hygrophytes such as Bidens frondosa and other 11 kinds of terrestrial plants prior to the construction while it produced 7 kinds of hygrophytes including Ranunculus ternatus as well as Phragmites australis and 9 kinds of terrestrial plants such as Potentilla supina after the construction. For the Phragmites australis, almost of them was weathered away in early days just after planting because of development period passed, but on May, six months later from planting, it was investigated that its length was approximated as 65 ~ 85cm with 75% coverage and that the number of it was 437 ~ 633/$m^2$. The study was shown that reed mats can improve environmental conditions of disturbed topographical base, enabling natural growth of various riparian vegetation including the introduced plant, reed. In the meantime, it was supposedly judged that to recover or build up a vegetarian strip, supplementary materials should be prepared to help produce and grow plants because it is not probable to expect river drift by water flow at confluence and that corrosion, burying or inundation owing to changes of water lever should be considered.

Effect of ion Chip and Yellow Soil on Growth and Physicochemical Characteristics of Soybean Sprouts (Ion Chip과 황토 처리가 콩나물의 생육 및 물리화학적 특성에 미치는 영향)

  • Kim In-Suk;Choi Sun-Young;Chung Mi-Ja;Kim Tae-Hoon;Sung Nak-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.316-324
    • /
    • 2005
  • The objectives of this study were to examine effect of ion chip and yellow soil on the growth and physicochemical characteristics of soybean sprouts. The weight and length increased rapidly in soybean sprouts cultivated for 4 days and then the increases slowed. Ascorbic acid increased rapidly after day 6 in soybean sprouts cultivated with ionized water (I.W), $1.0\%$ yellow soil in tap water (T.W+l.0) and $1.0\%$ yellow soil in ionized water (I.W+l.0). The detected content of minerals such as Mg, Ca, K and Fe in soybean sprouts was higher than other minerals. Iron content was the highest in soybean sprouts cultivated by I.W+1.0. The detected levels of glutamic acid in soybean sprouts cultivated for 4 days with ionized water was higher than in those grown with tap water. In all soybean sprouts, nucleotides such as UMP, CMP, AMP, Hx and soluble free sugars like sucrose, raffinose, stachylose were detected, and the levels of UMP were found to be the highest among nucleotides and sucrose among free sugars.

Effects of hematological parameters and plasma components of olive flounder, Paralichthys olivaceus by acute nitrite exposure according to water temperature (수온별 아질산 급성 노출에 따른 넙치, Paralichthys olivaceus의 혈액학적 성상 및 혈장성분의 영향)

  • Hong, Su-Min;Jo, A-Hyun;Kim, Da-Eun;Park, Yeon-Sook;Lee, Hye-Sung;Jeon, Yu-Hyeon;Kim, Seok-Ryel;Kim, Dae-Hee;Kang, Yue Jai;Kim, Jun-Hwan
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.201-212
    • /
    • 2021
  • Olive flounder (Paralichthys olivaceus) (Weight 110.9±17.1 g, length 22.3±1.2 cm) were exposed to waterborne nitrite at 0, 30, 60, 120, 240, 480 and 960 mg NO2-/L according to water temperature at 20℃ and 25℃ for 96 hours. The lethal concentration 50 (LC50) of olive flounder, P. olivaceus exposed to waterborne nitrite was 513.87 mg NO2-/L at 20℃ and 208.35 mg NO2-/L at 25℃, which means a significant difference in LC50 by the water temperature. Hemoglobin and hematocrit were significantly decreased by waterborne nitrite exposure. The inorganic component, plasma calcium, was significantly decreased, and the organic components such as plasma glucose and cholesterol were significantly decreased showing a similar tendency with calcium. In enzymatic components, the AST and ALP were also significantly decreased by nitrite exposure. The results of this study indicate that exposure to nitrite can affect the survival and hematological physiology of P. olivaceus, and the effect of exposure to nitrite had a significant effect on nitrite toxicity depending on the water temperature.

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

An Analysis of Scour Effect on Hydraulic Energy Dissipater Installation at Weir Downstream (보 하류부 감세공 설치에 대한 세굴 변화 분석)

  • Kang, Joon-Gu;Lee, Chang-Hun;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.453-458
    • /
    • 2016
  • While the design of weirs requires a scour-considered strategy, research on the analysis of the effectiveness of hydraulic energy dissipaters and design criteria are scarce due to the limited experimental facilities and restraint in the experiment conduction period. The study analyzed the scour dissipation effect of multidirectional dissipaters to improve the scour problems of a weir downstream and suggests design criteria to minimize scour. A hydraulic model experiment was conducted for Nakdong River Hapcheon-Changnyeong Weir and a model in 1/25 of horizontal accumulation and 1/25 of vertical accumulation was produced. The experimental equipment was classified into channels and a flow rate supply and an underwater pump were installed to enable flow at a maximum of 2.0 m3/s. The experimental inflow was 1.3 m3/s, the upstream water level was 0.36 m, downstream water level was 0.24 m, and a cylinder wooden baffle, a dissipater, with a diameter of 0.05 m was made. A 3D scanner was also used for an accurate scour depth comparison for a length change of the baffle before and after installing the baffle. When the baffle was arranged in the shape of a V, the depth of scour decreased by 36% while the scour length decreased by 49% due to flow reduction compared to that before installing the baffle.

Analysis of Effect of Ditch Restoration on Soil Loss Reduction in Highland Agricultural Fields (고랭지밭의 구거복원에 따른 토양유실저감 효과분석)

  • Sung, Yunsoo;Kim, Dong Jin;Lee, Suin;Ryu, Jichul;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.385-391
    • /
    • 2020
  • Soil loss is a serious problem frequently caused by local torrential rainfalls due to climate change. In particular, soil loss is occurring in agricultural areas rather than urban areas, and many pollutants are introduced into rivers, causing environmental problems. To reduce soil loss, the Ministry of Environment has designated and managed non-point source management areas. The Jaun-district in Hongcheon-gun, which was designed as a non-point pollution source management area in Gangwon-do, is located in the upper stream of Soyang Lake. Most of the agricultural fields are composed of highland agriculture fields. The highland agricultural fields in the Jaun-district are also composed of large-scale farming areas, and the ditches located near the agricultural fields have been illegally used for farmland. Therefore, the local government in Hongcheon-gun is conducting a project to restore the ditches occupied by agricultural fields. However, an analysis of the amount of soil loss that can be reduced by the restoration of the ditches has not been conducted yet. Thus, the purpose of this study was to analyze the effect of reducing the soil loss from the restoration of the ditches used as agricultural fields in the Jaun-district. The SATEEC L Module was used to analyze the reduction in soil loss by ditch restoration. The SATEEC L Module was constructed to estimate the LS factor using Moore and Burch's method after calculating the slope length using the digital elevation model and the maximum allowable slope length. The LS factor and the USLE formula were used to estimate the amount of soil loss that could be reduced by ditch restoration. The analysis showed that the ditch restoration could reduce about 16.6% of the soil loss in the Jaun-district. The results of this study will contribute to the study of methods to reduce soil loss in non-point pollution management areas.

Behaviors of Arsenic in Paddy Soils and Effects of Absorbed Arsenic on Physiological and Ecological Characteristics of the Rice Plant;V.Effect of arsenic added to soil on ecological characteristics of the rice plant (토양중(土壤中) 비소(砒素)의 행동(行動)과 수도(水稻)의 비소흡수(砒素吸收)에 의(衣)한 피해생리생태(被害生理生態)에 관(關)한 연구(硏究);V. 토양중(土壤中)의 비소함량(砒素含量)이 수도근(水稻根)의 생태(生態)에 미치는 영향(影響))

  • Lee, Min-Hyo;Lim, Soo-Kil;Park, Young-Dae;Lee, Suk-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • A pot experiment was conducted to find out the effect of arsenic(As) added to soil on the number of roots, root diameter, root length and root tissue of the rice plant. The results obtained were as follows: Higher As levels in soil remarkably reduced not only the number of roots, root length and root diameter, but also the diameter of the central cylinder, the route of the water and inor ganic nutrients of the roots. When arsenic was treated in soil, abnormal cells in the cortex of rice root were developed and considerably increased with higher As levels in the soil. These were only observed in the middle and upper parts of root segments except root tips and they looked like rice roots without epidermis in shape. Therefore, the occurrence of the abnormal cells in the root was attributed to high arsenic accumulation in the root. Its mechanism is not clear. However, it is assumed that the abnormal cells had occurred to compensate for lower amount of water and inorganic nutrient absorption by the injured rice root or self-defense against the penetration of arsenic within the rice root.

  • PDF

Experimental analysis of geomorphic changes in weir downstream by behavior of alternate bar upstream (보 상류 교호사주의 거동에 따른 하류 지형변화에 대한 실험적 분석)

  • Lee, KyungSu;Jang, Chang-Lae;Kim, GiJung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.801-810
    • /
    • 2019
  • This study analyzes the impact on geomorphic changes downstream due to alternate bars developed weir upstream through laboratory experiments. The disturbance, such as a spur in the side wall, of the flow at the inlet of the channel triggers the development of alternate bar upstream at the beginning of the experiment, and gradually moved downstream with keeping their shapes over time. The bed in the downstream of weir in the mid of channel scoured due to the scarcity of sediment inflow because weir upstream traps it. Moreover, bar migration speed decreases as the bars approaches to the weir with time. However, as time increases, the alternate bars upstream migrate over the weir, and sediment in the eroded bed of the weir downstream are deposited. The phase of the bar upstream changes oppositely after passing through the weir. The phase of the bar downstream changes rapidly as the shape of alternate bar is clear upstream, which is affected by the strong disturbance. The phase of bar changes, and the bar migration speed decreases gradually with time, and finally stopped due to forcing effects on the bar by the disturbance. The faster the reaction of alternate bar with a long spur, the larger the bar height formed downstream and the shorter the bar length. This means that the larger the forcing effect of bar, the more it affects the bar migration. In addition, although the size of the alternate bar increases over time, the bar doesn't migrate downstream and a forced bar is generated.

Coarse Grid Wave Hindcasting in the Yellow Sea Considering the Effect of Tide and Tidal Current (조석 및 조류 효과를 고려한 황해역 광역 파랑 수치모의 실험)

  • Chun, Hwusub;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.286-297
    • /
    • 2018
  • In the present study, wave measurements at KOGA-W01 were analyzed and then the numerical wind waves simulations have been conducted to investigate the characteristics of wind waves in the Yellow sea. According to the present analysis, even though the location of the wave stations are close to the coastal region, the deep water waves are prevailed due to the short fetch length. Chun and Ahn's (2017a, b) numerical model has been extended to the Yellow Sea in this study. The effects of tide and tidal currents should be included in the model to accommodate the distinctive effect of large tidal range and tidal current in the Yellow Sea. The wave hindcasting results were compared with the wave measurements collected KOGA-W01 and Kyeockpo. The comparison shows the reasonable agreements between wave hindcastings and measured data, however the model significantly underestimate the wave period of swell waves from the south due to the narrow computational domain. Despite the poorly prediction in the significant wave period of swell waves which usually have small wave heights, the estimation of the extreme wave height and corresponding wave period shows good agreement with the measurement data.