• Title/Summary/Keyword: water length effect

Search Result 816, Processing Time 0.038 seconds

The Impact of Characteristic Velocities Considering Geomorphological Dispersion on Shape of Instantaneous Unit Hydrograph (지형학적 분산을 고려한 특성유속이 순간단위도 형상에 미치는 영향)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The sensitivity of Nash model parameters is analyzed about characteristic velocities considering geomorphological dispersion in the present study. And changing shape of IUH compared and analyzed as variation of characteristic velocities through numerical experiment. Application watersheds are selected 4 subwatersheds which are located at main stream of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. And Nash model parameters are estimated with moments of path lengths and characteristic velocities. The changing trend about IUH which is derived Nash model parameters are compared as variation of characteristic velocities. The Major results of this study are summarized as follows. The Nash model parameters sensitively present changes about hillslope characteristic velocity. And the effect of the peak discharge and shape of recession in IUH dominate with hillslope's characteristic velocity, the effect of the peak time and shape of ascension in IUH dominate with channel's characteristic velocity.

Effect of Die Geometry on Expansion of Corn Flour Extrudate (사출구 구조에 따른 옥수수가루 압출성형물의 팽화특성)

  • Gu, Bon-Jae;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.148-154
    • /
    • 2011
  • The objective of this study was to determine the effect of die geometry on expansion index of extruded corn flour. Water solubility index, water absorption index and specific mechanical energy (SME) input were analyzed to observe the relationship with die geometry. The feed moisture content was 20 and 25%. Die dimensions were tapered angle (57, 95o) and length/diameter (L/D) ratio of die land (0.67, 1.67 and 2.67). The SME input was the highest at 20% moisture content and 2.23E-10 m3 die constant. The sectional and volumetric expansion indices at 20% moisture were increased with increase in die constant. However, die constant did not influence sectional expansion index of corn flour extrudate at 25% moisture content. The extruded corn flour at 25% moisture content had higher longitudinal expansion index than those of extruded corn flour at 20% moisture content. Sectional expansion and longitudinal expansion index were negatively correlated. The water absorption index and water solubility index were not affected with the die constant.

Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete

  • Bo Peng;Jiantao Wang;Xianzheng Dong;Feihua Yang;Chuming Sheng;Yunpeng Liu
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the effect of two types of aggregates (fly ash aggregate and shale aggregate) on the density, strength, and durability of preplaced lightweight aggregate concrete (PLWAC) was studied. The results showed that the 7 - 28 days strength of concrete prepared with fly ash aggregates (high water absorption rate) significantly increased, which could attribute to the long-term water release of fly ash aggregates by the refined pore structure. In contrast, the strength increase of concrete prepared with shale aggregates (low water absorption rate) is not apparent. Although PLWAC prepared with fly ash aggregates has a lower density and higher strength (56.8 MPa @ 1600 kg/m3), the chloride diffusion coefficient is relatively high, which could attribute to the diffusion paths established by connected porous aggregates and the negative over-curing effect. Compared to the control group, the partial replacement of fly ash aggregates (30%) with asphalt emulsion (20% solid content) coated aggregates can reduce the chloride diffusion coefficient of concrete by 53.6% while increasing the peak load obtained in a three-point bending test by 107.3%, fracture energy by 30.3% and characteristic length by 103.5%. The improvement in concrete performance could be attributed to the reduction in the water absorption rate of aggregates and increased energy absorption by polymer during crack propagation.

The Channel Wall Confinement Effect on Periodic Cryogenic Cavitation from the Plano-convex Foil

  • Ito, Yutaka;Nagayama, Tsukasa;Yamauchi, Hiroshi;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.383-390
    • /
    • 2008
  • Flow pattern of cavitation around a plano-convex foil, whose shape is similar to the inducer impeller of the turbo-pumps in the liquid fuel rocket engine, was observed by using a cryogenic cavitation tunnel of blowdown type for visualization. Working fluids were liquid nitrogen and hot water. The parameter range to be varied was between 20 and 60mm for channel width, 20 and 60mm for foil chord, -1.8 and 13.2 for cavitation number, 3.7 and 19.5m/sec for averaged inlet velocity, $8.5{\times}10^4$ and $1.5{\times}10^6$ for Reynolds number, -8 and $8^{\circ}$ for angle of attack, respectively. Especially at positive angle of attack, namely, convex surface being downstream, the whole cavity or a part of the cavity on the foil surface departs periodically. Periodic cavitation occurs only in case of smaller cavitation size than twice foil chord. Cavitation thickness and length in 20mm wide channel are larger than those in 60mm due to the wall confinement effect. Therefore, periodic cavitation in 60mm wide channel easily occurs than that in 20mm. These results suggest that the periodic cavitation is controlled by not only the hydrodynamic effect of vortex shedding but also the channel wall confinement effect.

  • PDF

The Anti-oxidative and Anti-inflammatory Effect of Lonicera Japonica on Ulcerative Colitis Induced by Dextran Sulfate Sodium in Mice (금은화 추출물의 항산화, 항염증 효과가 Dextran Sulfate Sodium으로 유도된 생쥐의 궤양성 대장염에 미치는 영향)

  • Cha, Ho Yeol;Jeong, A Ram;Cheon, Jin Hong;Ahn, Sang Hyun;Park, Sun Young;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • Objectives : This study was to investigate the anti-oxidative and anti-inflammatory effect of Lonicera japonica water extracts (LE) on Ulcerative Colitis Induced by DSS (Dextran Sulfate Sodium) in Mice. Methods : Colitis was induced by DSS in Balb/c mice. The sample group was divided into three. The mice in control group were not inflammation-induced. The pathological group was composed of untreated colitis elicited mice. The experimental group was administered Lonicera japonica water extracts (LE) after colitis elicitation. The effects on ulcerative colitis were evaluated the anti-oxidant effect, inhibition of COX-2 mRNA expression, the morphological change of colonic mucosa, decrease effect of HSP 70 and COX-2 in mucosa. Results : The SOD ability of LE was dose-dependently increased and the LPS-induced COX-2 mRNA expression of LE was dose-dependently decreased. LE showed the protective effects on DSS-induced experimental colitis. LE inhibited shortening of colon length, the hemorrhagic erosion in colonic mucosa. LE also showed the decrease effect for HSP70 and COX-2 in mucosa. Conclusions : The current results demonstrate the clinical utility of LE in traditional medicine and indicate the possible treatments for ulcerative colitis from natural products. Further investigations for exact mechanisms will be needed.

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

A Study on the Screening of 2, 4, 6-trinitntoluene Tolerant Indigenous Herbaceous Piano (2, 4, 6-trinitrotoluene에 대해 내성을 지닌 토착 식물종 선정에 대한 연구)

  • 배범한;김선영;이인숙;장윤영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To select a suitable indigenous plant for the phytoremediation of TNT contaminated soil, eight representative species of native grasses were tested to identify TNT toxicity thresholds. The threshold was determined based on various factors including cumulative seed germination, root and shoot length, fresh biomass, and the amount of water uptake under various TNT concentrations. Phytotoxic effect of TNT on plants was increased with the increase in TNT concentration but the degree was varied between grass species. Concentrations up to 60-80mgTNT/liter did not affect germination of Abutilion avicennae, Echinochioa crusgalli var. frumentacea, and Aeschynomene indica. Phytotoxicity threshold inhibition (50%) of Abutilion avicennae, schinochioa crusgalli var. frumentacea, Aeschynomene indica were 5-40mgTNT/liter for root length, 50-73mg TNT/Liter for shoot length and 68-99mgTNT/Liter for fresh biomass during 14 days of seedling exposure. Root and shoot growth as well as fresh biomass decreased as TNT concentration increased. In addition, the amount of water uptake decreased with increasing TNT concentration in Abutilion avicennae and Aeschynomene indica. Comparison of toxicity thresholds for the tested grass species showed that sensitivity of plants to TNT was in the order of root length > shoot length > fresh biomass > germination rate. From these results, we concluded that Abutilion avicennae and Aeschynomene indica had tolerance to TNT among the species tested.

  • PDF

Generalization of Vertical Plume Despersion in the concective Boundary Layer at Long Distances on Mesoscale (중거리에서 대류경계층 연직방향 plume 확산의 일반화)

  • 서석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • In order to genralize the vertical dispersion of plume at long distances on mesoscale over complex terrain dispersion coefficients data have been obtained systematically according to lapsed time after release by using a composite turbulence water tank that simulates convective boundary layer. Dispersion experiments have been carried out for various combined conditions of thermal turbulence intensity mechanical turbulence intensity and plume release height at slightly to moderately unstable conditions. Results of tracer dispersion experiments conducted using water tank camera and image processing system have been converted into atmospheric dispersion data through the application of similarity law. The equation $\sigma$z/Zi=aX/(b+c X2)0.5 where $\sigma$2; vertical dispersion coefficient zi : mixing height X : dimen-sionaless downwind distance was confirmed to be an appropriate and general equation for expressing $\sigma$2 variation with turbulence intensity and plume release height, The value of "a" was found to be principally affected by mechanical turbulence intensity and that of "b" by mechanical turbulence intensity and release height. It was confirmed that the magnitude of "c" varies with release height. Results of water tank experiments on the relationship of $\sigma$2 vs downwind distance x have been compared with actual atmospheric dispersion data such as CONDORS data and Bowne's nomogram Operating conditions of a composite turbulence water tank for simulating the field turbulence situations of CONDORS experiments and Bowne's $\sigma$2(x) nomogram for suburban area have also been investigated in terms of water temperature difference between convection water tank and bottom plate heating tank grid plate stroke mixing water depth length scale and velocity scale. Moreover the effect of mechanical turbulence intensity on vertical dispersion has been discussed in the light of release height and downwind distance. height and downwind distance.

  • PDF

Study on the Lettuce Growth Using Different Water Sources in a Hydroponic System (수경재배용 용수 종류에 따른 상추 생장 연구)

  • Heo, Jeong Min;Kim, Ga Eun;Kim, Jin Hwang;Choi, Byeongwook;Lee, Sungjong;Lee, Byungsun;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.191-198
    • /
    • 2022
  • BACKGROUND: Plants can be grown using a culture medium without soil using a hydroponic system. Crop production by the hydroponic system is likely to increase as a means of solving various problems in the agricultural sector such as aging of rural population and climate change. Different water sources can be used to prepare the culture medium used in the hydroponic system. Therefore, it is necessary to study the effect of different water sources on crop production by the hydroponic system in order to explore the applicability of various water resources. METHODS AND RESULTS: Lettuce was cultivated by the hydroponic system and three different water sources [tap water (TW), bottled water (BW), and groundwater (GW)] were used to compare the effect of water sources on lettuce growth. The three kinds of waters with a nutrient solution (TW-M, BW-M, GW-M) were also used as the media. After the six-week growth period, the lettuce length and weight, the number of leaves, and the contents of chlorophylls and polyphenols were compared among the different media used. The lettuces did not grow in the waters without the nutrient solution. In the media, the lettuce growth and the contents of chlorophylls were affected by the different water sources used to prepare the media, while the contents of polyphenols were not affected. The absorbed amounts of ions by lettuces, especially Ca and Zn ions, and the dry weight of the harvested lettuces showed a strong positive correlation. CONCLUSION(S): Overall, this study shows that different water sources used for growing lettuce in a hydroponic system can affect lettuce growth. Further studies on the enhancement of crop qualities using different water sources may be required in future studies.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.