• Title/Summary/Keyword: water inflow prediction

Search Result 120, Processing Time 0.029 seconds

Impacts on Water Surface Level of the Geum River with the Diversion Tunnel Operation for Low Flow Augmentation of the Boryong Dam (금강-보령댐 도수터널 운영에 따른 금강 본류 내 수위 영향 분석 연구)

  • Jang, Suk-Hwan;Oh, Kyoung-Doo;Oh, Ji-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1031-1043
    • /
    • 2017
  • Recently severe drought caused the water shortage around the western parts of Chungcheongnamdo province, South Korea. A Diversion tunnel from the Geum river to the Boryong dam, which is the water supply dam for these areas has been proposed to solve this problem. This study examined hydraulic impacts on the Geum river associated with the diversion plan assuming the severe drought condition of 2015 would persist for the simulation period of 2016. The hydraulic simulation model was verified using hydrologic and hydraulic data including hourly discharges of the Geum river and its 8 tributaries, fluctuation of tidal level at the mouth of the river, withdrawals and return flows and operation records of the Geum river barrage since Feb. 1, 2015 through May 31, 2015. For the upstream boundary condition of the Geum river predicted inflow series using the nonlinear regression equation for 2015 discharge data was used. In order to estimate the effects of uncertainty in inflow prediction to the results total four inflow series consisting of upper limit flow, expected flow, lower limit flow and instream flow were used to examine hydraulic impacts of the diversion plan. The simulation showed that in cases of upper limit and expected flows there would be no problem in taking water from the Geum river mouth with a minimum water surface level of EL(+) 1.44 m. Meanwhile, the simulation also showed that in cases of lower limit flow and instream flow there would be some problems not only in taking water for water supply from the mouth of the Geum river but also operating the diversion facility itself with minimum water surface levels of EL(+) 0.94, 0.72, 0.43, and 0.14 m for the lower limit flow without/with diversion and the instream flow without/with diversion, respectively.

Forecasting of Daily Inflows Based on Regressive Neural Networks

  • Shin, Hyun-Suk;Kim, Tae-Woong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.45-51
    • /
    • 2001
  • The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.

  • PDF

Artificial Neural Networks for Forecasting of Short-term River Water Quality (단기 하천수질 예측을 위한 신경망모형)

  • Kim, Man-Sik;Han, Jae-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.11-17
    • /
    • 2002
  • The purpose of this study is the prediction of pollutant loads into Seomjin river watershed using neural networks model. The pollutant loads into river watershed depend upon the water quantity of inflow from the upstream as well as the water quality of the inflow into the river. For the estimation of pollutants into river, a neural networks model which has the features of multi-layered structure and parallel multi-connections is used. The used water quality parameters are BOD, COD and SS into Seomjin river. The results of calibration are satisfactory, and proved the availability of a proposed neural networks model to estimate short-term water quality pollutants into river system.

  • PDF

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques (관측자료 동화기법과 댐운영을 고려한 실시간 댐 수문량 예측모형 개발)

  • Lee, Byong Ju;Jung, Il-Won;Jung, Hyun-Sook;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.755-765
    • /
    • 2013
  • This study developed a real-time dam's hydrologic variables prediction model (DHVPM) and evaluated its performance for simulating historical dam inflow and outflow in the Chungju dam basin. The DHVPM consists of the Sejong University River Forecast (SURF) model for hydrologic modeling and an autoreservoir operation method (Auto ROM) for dam operation. SURF model is continuous rainfall-runoff model with data assimilation using an ensemble Kalman filter technique. The four extreme events including the maximum inflow of each year for 2006~2009 were selected to examine the performance of DHVPM. The statistical criteria, the relative error in peak flow, root mean square error, and model efficiency, demonstrated that DHVPM with data assimilation can simulate more close to observed inflow than those with no data assimilation at both 1-hour lead time, except the relative error in peak flow in 2007. Especially, DHVPM with data assimilation until 10-hour lead time reduced the biases of inflow forecast attributed to observed precipitation error. In conclusion, DHVPM with data assimilation can be useful to improve the accuracy of inflow forecast in the basin where real-time observed inflow are available.

Hydraulic Flood Routing using Linear Reservoir Model (선형저수지모형을 적용한 수리학적 홍수추적)

  • Jeon, Min-Woo;Cho, Young-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.787-796
    • /
    • 2002
  • Hydraulic flood routing was performed for unsteady flow in a natural river using Preissmann scheme. A Log-Pearson Type-Ⅲ hydrograph is chosen arbitrarily as the upstream boundary condition and lateral inflow hydrographs for sensitivity analysis. For the application with an actual river system, upstream and lateral inflow hydrographs were estimated by the linear reservoir model and the Manning's equation was used as the downstream boundary condition. The unsteady flow model using the linear reservoir model as the inflow hydrographs was applied to Bochung stream basin and gives good results, and is approved to be used for the runoff prediction. As results of the sensitivity analysis, the proposed model may help to estimate the roughness coefficients when using the unsteady flow model with lateral inflow combined with the linear reservoir model.

A Study on Mulwang Reservoir Water Quality Improvement Effect Using Watershed-Reservoir Integrated Prediction (유역-호소 통합수질예측 기법을 이용한 물왕저수지 수질개선효과 분석)

  • Oh, Heesang;Rhee, Han-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • Since living environment has improved, waterfront space using and clear water demand have increased. Ministry of Environment (ME) designated polluted reservoir (worse than 4th grade) as a priority management reservoir to improve water quality (better than 3rd grade) accordingly. Minstry of Agriculture, Food and Rural Affairs (MAFRA) aims reservoir water quality 4th not 3rd grade. And water quality of agricultural reservoirs was not a great interest. For this reason, there are very few water quality monitoring data. However after designating as a priority management reservoir, reservoir manager should start water quality and flow monitoring of reservoirs and inflow streams. This process makes it possible setting complex model to accurate prediction of reservoir water quality and volume. Mulwang reservoir designated as a priority management reservoir in September 2014. In this study, BASINS/WinHSPF and EFDC-WASP were used to predict effect of water quality improvement countermeasures in Mulwang reservoir. To improve water quality of Mulwang reservoir, Siheung-si and Korea Rural Community Corporation (KRCC) established water quality improvement countermeasures. However result of simulation adapting these countermeasures cannot achieve 3rd grade. So 4 additional scenarios were adapted and the result satisfied 3rd grade. This study could help to establish water quality improvement countermeasure by using complex modeling.

Prospect of future water resources in the basins of Chungju Dam and Soyang-gang Dam using a physics-based distributed hydrological model and a deep-learning-based LSTM model (물리기반 분포형 수문 모형과 딥러닝 기반 LSTM 모형을 활용한 충주댐 및 소양강댐 유역의 미래 수자원 전망)

  • Kim, Yongchan;Kim, Youngran;Hwang, Seonghwan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1115-1124
    • /
    • 2022
  • The impact of climate change on water resources was evaluated for Chungju Dam and Soyang-gang Dam basins by constructing an integrated modeling framework consisting of a dam inflow prediction model based on the Variable Infiltration Capacity (VIC) model, a distributed hydrologic model, and an LSTM based dam outflow prediction model. Considering the uncertainty of future climate data, four models of CMIP6 GCM were used as input data of VIC model for future period (2021-2100). As a result of applying future climate data, the average inflow for period increased as the future progressed, and the inflow in the far future (2070-2100) increased by up to 22% compared to that of the observation period (1986-2020). The minimum value of dam discharge lasting 4~50 days was significantly lower than the observed value. This indicates that droughts may occur over a longer period than observed in the past, meaning that citizens of Seoul metropolitan areas may experience severe water shortages due to future droughts. In addition, compared to the near and middle futures, the change in water storage has occurred rapidly in the far future, suggesting that the difficulties of water resource management may increase.

Uncertainty assessment of ensemble streamflow prediction method (앙상블 유량예측기법의 불확실성 평가)

  • Kim, Seon-Ho;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.523-533
    • /
    • 2018
  • The objective of this study is to analyze uncertainties of ensemble-based streamflow prediction method for model parameters and input data. ESP (Ensemble Streamflow Prediction) and BAYES-ESP (Bayesian-ESP) based on ABCD rainfall-runoff model were selected as streamflow prediction method. GLUE (Generalized Likelihood Uncertainty Estimation) was applied for the analysis of parameter uncertainty. The analysis of input uncertainty was performed according to the duration of meteorological scenarios for ESP. The result showed that parameter uncertainty was much more significant than input uncertainty for the ensemble-based streamflow prediction. It also indicated that the duration of observed meteorological data was appropriate to using more than 20 years. And the BAYES-ESP was effective to reduce uncertainty of ESP method. It is concluded that this analysis is meaningful for elaborating characteristics of ESP method and error factors of ensemble-based streamflow prediction method.

Prediction of Water Quality in Haenam Estuary Reservoir Using Multiple Box Model (I) -Development and Application of Water Quality Subroutines- (Multiple Box 수질모형에 의한 해남호 수질예측 (I) - 수질부 모형의 개발과 적용 -)

  • 신승수;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.116-129
    • /
    • 1990
  • A rational management of water resources in estuary reservoirs necessiates the prediction of water quality. In this study, a multiple box model for the water quality prediction was developed as a tool for the purpose of examining an adequate way to improve and maintain the water quality. Some submodels that are suitable for simulating the mixing behavior of pollutant materials in a lake were considered in this model. The model was appiled for predicting water qualities of Haenam Esturay Reservoir. The result from this study can be summarized as follows : 1.A water quality simulation model that can predict the 10-day mean value of water qualities was developed by adding some submodels that simulate the concentrations of chlorophyll-a, BOD, T-P and T-N to the existing Multiple Box Model representing the mixing and circulating of materials by the hydarulic action. 2.As input data for the model developed, the climatic data including precipitation, solar radiation, temperature, cloudness, wind speed and relative humidity, and the water buget records including the pumping discharge and the releasing discharge by drainage gate were ollected. The hydrologic data for the inflow discharge from the watershed was obtained by simulation with the aid of USDAUL-74/SNUA watershed model. Also the water quality data were measured at streams and the reservoir. 3.As a result of calibration and verification test by using four comonents of water quality such as Chlorophyll-a, BOD, T-P and T-N, it was found that the correlation coefficeints between the observed and the simulated water qualities showed greater than 0.6, therefore the capability of the model to simulate the water quality was proved. 4.The result based on the model application showed that the water quality of the Haenam Estuary Reservoir varies seasonally with the harmonic trend, however the water quality is good in winter and get worse in summer. Also it may be concluded that the current grarde of water quality in the Heanam Esutary Reservoir is ranked as grade 4 suitable only for the agricultutal use.

  • PDF