• Title/Summary/Keyword: water inflow

Search Result 1,481, Processing Time 0.026 seconds

Validation of Complementary Relationship Hypothesis for Evapotranspiration in Multipurpose Dam Basins (다목적댐유역에서의 증발산 보완관계가설 검증)

  • Kim, Jihoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.549-559
    • /
    • 2017
  • The complementary relationship hypothesis for areal evapotranspirations was validated in the regional-scale area of multipurpose dam basins in Korea and the long-term water balances were indirectly identified. Annual actual evapotranspiration ($ET_A$) was assumed the difference between total annual precipitation and total annual inflow and the available moisture was assumed the total precipitation. The seasonally varying pan coefficient (kp) is estimated as the ratio of the $ET_{pan}$ and the evapotranspiration calculated by FAO Penman-Monteith equation ($ET_{PM}$). The complementary relationships using ground observation data of $ET_P$ and $ET_A$ in the multipurpose dam basins follow generally the typical pattern that $ET_P$ and $ET_A$ is complementary and converges to equivalent evapotranspiration ($ET_W$) under the extreme wet environment. However, $ET_A$ of Juam dam was estimated relatively greater than other basins and exceeds even $ET_P$ at certain range with high moisture availability, which can be understood as the results of possible over-estimation of precipitation or under-estimation of dam inflow. It is expected that the use of evapotranspiration complementary relationship for validating hydrological water balances will contribute to controlling uncertainties in estimating dam inflows during flood season in particular.

Environmental Factors and Catch Fluctuation of Set Net Grounds in the Coastal Waters of Yeosu 3. The Quantity of Phytoplankton and Catch Fluctuation. (여수연안 정치강어장의 환경요인과 어항변동에 관한 연구 3 . 기초생산자의 출현과 어획량의 변동)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.15-23
    • /
    • 1995
  • In order to investigate the relation between the phytoplankton and the catch fluctuation of set net fishing grounds located in the coastal waters of Yeosu, phytoplankton observations on the fishing ground were carried out by the training ship of Yeosu, Fisheries University from April to November in 1990, and the data obtained were compared with the catch data from the joint market of yeosu fisheries cooperative society in 1990. The results obtained are summarized as follows: 1) The phytoplanktons were more appeared in summer than in spring or autumn and their quantity was much in the shore of Dolsan-do, and little in the offshore waters distributed in the shores of Sori-do and Sejon-do, Thus, the quantity of the planktons could be used for estimating the distribution of watermass. 2) The fishes caught by the set net were arranged in the order of catch amounts as follows: Spanish mackerel > Hair tail > Common mackerel > Sardine > Anchovy > Horse mackerel > Yellow tail. The catches of anchovy and Sardine were high in April to May and Hair tail. Horse mackerel and Common mackerel were caught from June to October. But Spanish mackerel were caught during the whole period of fishing. 3) The catches by set nets showed a correlation with the quantity of phytoplanktons. The planktons appeared most in the inner waters. influenced largely by the inflow of land waters in summer. and the catches were high in summer when the offshore water was distributed least. Therefore, the most important factor influencing the catches were regarded to be the productivity of food organism in inner water into which abundant nutrients were supplied by the inflow of land waters. That is, the fluctuation of catches by set nets seemed to be influenced mainly by the productivity of food organism.

  • PDF

Spatial Extension of Runoff Data in the Applications of a Lumped Concept Model (집중형 수문모형을 활용한 홍수유출자료 공간적 확장성 분석)

  • Kim, Nam Won;Jung, Yong;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.921-932
    • /
    • 2013
  • Runoff data availability is a substantial factor for precise flood control such as flood frequency or flood forecasting. However, runoff depths and/or peak discharges for small watersheds are rarely measured which are necessary components for hydrological analysis. To compensate for this discrepancy, a lumped concept such as a Storage Function Method (SFM) was applied for the partitioned Choongju Dam Watershed in Korea. This area was divided into 22 small watersheds for measuring the capability of spatial extension of runoff data. The chosen total number of flood events for searching parameters of SFM was 21 from 1991 to 2009. The parameters for 22 small watersheds consist of physical property based (storage coefficient: k, storage exponent: p, lag time: $T_l$) and flood event based parameters (primary runoff ratio: $f_1$, saturated rainfall: $R_{sa}$). Saturated rainfall and base flow from event based parameters were explored with respect to inflow at Choongju Dam while other parameters for each small watershed were fixed. When inflow of Choongju Dam was optimized, Youngchoon and Panwoon stations obtained average of Nash-Sutcliffe Efficiency (NSE) were 0.67 and 0.52, respectively, which are in the satisfaction condition (NSE > 0.5) for model evaluation. This result is showing the possibility of spatial data extension using a lumped concept model.

Flood Simulation for Basin-Shaped Urban Watershed Considering Surface Flow (분지형 도시유역에서의 노면류를 고려한 침수모의)

  • Ahn, Jeonghwan;Cho, Woncheol;Jung, Jaehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.841-847
    • /
    • 2014
  • Urban runoff models have been continuously developing with concerns for urban flood. Recently, models that be able to quantitatively analyze surface inundation caused by overflowed water from storm sewer were also developed by coupling 1-dimensional sewer model and 2-dimensional surface flow model. However, only overflowed water from storm sewer can be analyzed by the models have been developed until now. They are limited to be not able to analyze surface inundation caused by surface runoff that could not flow into the storm sewer. In order to overcome the limitation, basin-overlap method was devised adding a dummy 1-dimensional sewer layer to the model, so it can consider the efficiency of inflow to the storm sewer system. XP-SWMM 2011 is applied for urban runoff model and the flood event occurred on July 27, 2011 in basin-shaped Sadangcheon watershed is chosen for study inundation event. According to simulation results basin-overlap method reappear the observed inundation event more precisely than traditional method. This results suggest that drainage system has to be improved for reducing inundation caused by surface runoff and would be used as considerations for planning an urban basin design magnitude.

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary (소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석)

  • Choi, Nak Yong;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.390-399
    • /
    • 2012
  • This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

Safety Analysis of Storm Sewer Using Probability of Failure and Multiple Failure Mode (파괴확률과 다중파괴유형을 이용한 우수관의 안전성 분석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.967-976
    • /
    • 2010
  • AFDA (Approximate Full Distribution Approach) model of FORM (First-Order Reliability Model) which can quantitatively calculate the probability that storm sewer reach to performance limit state was developed in this study. It was defined as a failure if amount of inflow exceed the capacity of storm sewer. Manning's equation and rational equation were used to determine the capacity and inflow of reliability function. Furthermore, statistical characteristics and distribution for the random variables were analyzed as a reliability analysis. It was found that the statistical distribution for annual maximum rainfall intensity of 10 cities in Korea is matched well with Gumbel distribution. Reliability model developed in this study was applied to Y shaped storm sewer system to calculate the probability that storm sewer may exceed the performance limit state. Probability of failure according to diameter was calculated using Manning's equation. Especially, probability of failure of storm sewer in Mungyeong and Daejeon was calculated using rainfall intensity of 50-year return period. It was found that probability of failure can be significantly increased if diameter is decreased below the original diameter. Therefore, cleaning the debris in sewer pipes to maintain the original pipe diameter should be one of the best ways to reduce the probability of failure of storm sewer. In sewer system, two sewer pipes can flow into one sewer pipe. For this case, probability of system failure was calculated using multiple failure mode. Reliability model developed in this study can be applied to design, maintenance, management, and control of storm sewer system.

High Ferrihydrite Turbidity in Groundwater of Samdong-Myeon (Ulsan) by Carbonate-Water Inflow of Deep Origin (심부 탄산수의 유업에 의한 울산시 삼동면 지하수의 높은 페리하이드라이트 탁도)

  • Jeong, Gi-Young;Kim, Seok-Hwi;Kim, Kang-Joo;Jun, Seong-Chun;Ju, Jeong-Woung;Choi, Mi-Jung;Cheon, Jeong-Yong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2011
  • The turbidity in several wells of Samdong-myeon, Ulsan, exceeded potable groundwater standard (1 NTU). Mineralogical analysis showed that the fine suspended particles are ferrihydrite spheres with a size of less than $0.5\;{\mu}m$ and helical iron-oxidizing bacterial filaments, and their aggregates. Ferrihydrite was almost amorphous only showing two electron diffraction rings, and contained Si and P. Helical bacterial filaments were almost replaced by ferrihydrite. The helical bacteria have played an important role in the ferrihydrite formation by becoming the loci for ferrihydrite precipitation as well as oxidizing ferrous iron. The physicochemical conditions of low pH, low redox potential, high Ca concentration, and high alkalinity are consistent with the hydrogeochemical characteristics of carbonate groundwater, implicating that the inflow of deep ferriferous carbonate groundwater and its oxidation have caused the ferrihydrite turbidity in several wells of the study area.

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

The Study of the Need to Remove Soluble nitrogen ($NH_3-N$) Generated from Anaerobic digestor Retrofitted in Municipal Wastewater Treatment Plants (하수처리장 에너지자립화사업에서 혐기성소화공정으로부터 용출되는 용존성질소($NH_3-N$)의 처리 필요성 연구)

  • Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.68-75
    • /
    • 2014
  • Soluble nitrogen produced from anaerobic digestor is able to have a strong influence on the effluent water quality of municipal wastewater treatment plants during a winter season in particular. The modeling results using the GPS-X simulation software shows that the soluble nitrogen concentration generated from the anaerobic digestor is 214.1 mg/L in the return flow and 6.2 mg/L in the inflow of the primary settler higher than those in nonexistence of the anaerobic digestor, respectively. In the case of using a separation process (flotation thickener) in order to treat the return flow from the sludge treatment system, the soluble nitrogen concentration in the effluent from the separation process and in the inflow of the primary setter could be 6.0 mg/L higher and 0.7 mg/L lower than those of nonexistence of the process, respectively. The modeling results propose the need of the equipments to be able to remove the soluble nitrogen ($NH_3-N$) produced from the digestor in the improvement projects of anaerobic digestor in municipal wastewater treatment plants.

Analysis of Flood Characteristics at Confluence by Lateral Inflow (횡유입에 의한 합류부 홍수특성 분석)

  • Choi, Hung-Sik;Cho, Min-Suk;Park, Young-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.59-68
    • /
    • 2006
  • Flow separation of recirculation zone by increasing of flow and change of its direction at confluence results in backwater due to conveyance reduction. The hydraulic characteristics of flow separation are analysed by experimental results of flow ratios of tributary and main streams and approaching angles. The boundary of flow separation by dimensionless length and width is defined by the streamline of zero and this definition agrees well to the existing investigation. Because flow separation doesn't appear in small flow ratio and approaching angle of $30^{\circ}$, the equation of flow separation with flow ratio and approaching angle is provided. In flow separation consideration and comparing with previous results, the existing equations of dimensionless length and width ratios by function of approaching angle, flow ratio, and downstream Froude number are modified and also contraction coefficient and shape factor are analysed. Dimensionless length and width ratios are proportional to the flow ratio and approaching angle. In analysis of water surface profiles, the backwater effects are proportional to the flow ratio and approaching angle and the magnitude at outside wall is greater than that of inside wall of main stream. The length, $X_l$ from the beginning of confluence to downstream of uniform flow, where the depth is equal to uniform depth, is characterized by width of stream, flow ratio, approaching angle, and contraction coefficient. The ratios between maximum water depth by backwater and minimum depth at separation are analysed.