• Title/Summary/Keyword: water infiltration

Search Result 905, Processing Time 0.032 seconds

A Hydrologic Analysis for the Infiltration Storages Planned on Jeju-do (제주도에 계획된 침투저류지의 수문학적 분석 사례)

  • Lee, Sangho;Lee, Jungmin;Kang, Taeuk;Kang, Shinuk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1040-1048
    • /
    • 2010
  • An infiltration storage can be installed as a method of reducing runoff from catchment and increasing stream flow during the dry period by recharging groundwater. However, there is no proper model and method that can be used to design storage capacity of an infiltration storage in Korea. The purpose of the study is to evaluate capacities of infiltration storages planned on Jeju-do in Korea by modifying Storm Water Management Model (SWMM). The basic equations for the infiltration storage are same as those of the infiltration trench used in MIDUSS. Infiltration rates of the infiltration storages were first measured by double ring infiltrometers, and then the modified model was applied to evaluate adequacy for the capacities of three infiltration storages planned on Jeju-do in Korea. The application results show that the two infiltration storages with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the storages. However, the other infiltration storage with lower infiltration rates has not sufficient capacity to infiltrate the total water inflow to the storage and release occurs to the downstream region. The simulation model and method applied can be used for capacity evaluation of future infiltration storages on highly pervious areas in Jeju-do.

Effect of constant loading on unsaturated soil under water infiltration conditions

  • Rasool, Ali Murtaza;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In many tropical regions, soil structures often fail under constant loads as a result of decreasing matric suction due to water infiltration. Most of the previous studies have been performed by infiltrating water in the soil specimen by keeping shear stress constant at 85-90% of peak shear strength in order to ensure specimen failure during water infiltration. However, not many studies are available to simulate the soil behavior when water is infiltrated at lower shear stress and how the deformations affect the soil behavior if the failure did not occur during water infiltration. This research aimed at understanding both the strength and deformation behavior of unsaturated soil during the course of water infiltration at 25%, 50% and 75% of maximum deviatoric stress and axial strain by keeping them constant. A unique stress-strain curve expresses the transient situation from unsaturated condition to failure state due to water infiltration is also drawn. The shearing-infiltration test results indicate that the water infiltration reduces matric suction and increase soil deformation. This research also indicates that unsaturated soil failure problems should not always be treated as shear strength problems but deformation should also be considered while addressing the problems related to unsaturated soils.

Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils (불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향)

  • Kim, Sangrae;Ki, Jaehong;Kim, Youngjin;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town (토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 -)

  • Hyun, Kyoung-Hak;Lee, Jung-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

Analysis of Analytical Models and Numerical Model for Evaluating Induced Infiltration Rate (유도침투량의 정량화를 위한 해석모형과 수치모형의 분석)

  • Lee, Do-Hun;Lee, Eun-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.301-310
    • /
    • 1999
  • In this paper a numerical model and two analytical models in the hydraulically connected stream-aquifer system were analyzed to compare the induced infiltration rate curves derived from each model. And we also examined the effects of anisotropy of hydraulic conductivity and the direction of the ambient ground water flow on the quantification of the induced infiltration rate. The induced infiltration rate curve determined by models is very simple and useful for estimating the induced infiltration rate since it contains only four physical variables such as the induced infiltration rate, the pumping rate, the distance between the pumping well and the stream, and the ambient ground water flow rate. Under the conditions tested in this paper the induced infiltration rate curves resulted from the Wilson's analytical model and FEWA numerical model were in good agreement, and the anisotropic ratio of hydraulic conductivity was evaluated as a physical factor which influences the behaviour of the induced infiltration rate curve. The methods and results of the paper might Icad to improve the understanding of the induced infiltration phenomenon and can be applied to the planning and disign of pumping well and the optimal determination of the induced infiltration rate and pumping rate for water quality management of the water supply wells.

  • PDF

Analysis of Performance and Measurement of Water Contents for Road Substructures with an Infiltration Trench (침투도랑 인접도로 하부구조의 함수비 측정 및 공용성 분석)

  • Kong, Seokjun;Jung, Jongsuk;Yeon, Gyumin;Kim, In Tai
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • PURPOSES : This study mechanically analyzed the performance of road substructures with focus on infiltration trenches of pavement substructures. METHODS : Water contents and response times for precipitation of pavement substructures were investigated via sensors buried near the infiltration trench to measure water contents. RESULTS : The results of the water contents of pavement systems constructed with an infiltration trench yield levels that were slightly increased by approximately 2% compared to those measured from general pavement systems. This water content difference of 2% resulted in a decrease in service life of less than two years. CONCLUSIONS : Service life reduction due to an infiltration trench is minimal, particularly when the trench is installed with proper caution.

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.

Application of Percentile Rainfall Event for Analysis of Infiltration Facilities used by Prior Consultation for LID (Low Impact Development)

  • Kwon, Kyung-Ho;Song, Hye-Jin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.5-12
    • /
    • 2015
  • Purpose: Retention and infiltration of small and frequently-occurring rainfall by LID facilities account for a large proportion of the annual precipitation volume. Based on 4 standard facilities such as Porous Pavement, Infiltration Trench, Cylindrical Infiltration Well, Rectangular Infiltration Well by Seoul Metropolitan Handbook of the Prior Consultation for LID. The total retention volume of each facility was calculated according to the type and size. The Purpose of this study is to find out the quantitative relationship between Percentile Rainfall Event and Design Volume of Infiltration Facilities. Methode: For the estimation of Percentile Rainfall Event, Daily Precipitation of Seoul from 2005 to 2014 was sorted ascending and the distribution of percentile was estimated by PERCENTILE spreadsheet function. The managed Rainfall Depth and Percentile of each facility was calculated at the several sizes. In response to the rainwater charge volume of 5.5mm/hr by the Category "Private large site", the 3 types of facilities were planned for example. The calculated Rainfall Depth and Percentile were 54.4mm and 90% by the use of developed Calculation-Module based on the Spreadsheet program. Result: With this Module the existing Designed Infiltration volume which was introduced from Japan was simply converted to the Percentile-Rainfall-Event used in USA.

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.