• 제목/요약/키워드: water flux

검색결과 1,891건 처리시간 0.037초

응집·한외여과 조합공정에서 플럭스와 선속도가 막오염에 미치는 영향에 관한 연구 (A Study on Membrane Fouling by Flux and Linear Velocity in Coagulation/Ultrafiltration Membrane System)

  • 문성용;이상협;김승현;윤조희
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.429-436
    • /
    • 2005
  • A coagulation/ultrafiltration membrane hybrid system was operated to treat river water with capacity of $0.06m^3/d$. The impact on membrane fouling by flux and linear velocity was investigated. It is known that pressure increase is proportional to flux increase. However, pressure increase was much faster than theoretical value in the pilot plant test. So it was suggested that flux was on important factor in ultrafiltration of continuous operation. Membrane fouling was decreased when linear velocity was increased. This phenomenon was found more obviously without coagulation. With the combination of coagulation and sedimentation, membrane fouling was not reduced conspicuously. Big particles formed during coagulation and sedimentation were destroyed by feed and circulation pumping, which resulted in little effect on membrane fouling reduction. The degree of destruction was similar at various linear velocities. In this study, the hollow fiber membrane was used and the system was operated in pressure type module. In case of the system used in this study, membrane fouling has been affected lightly by linear velocity variation when coagulation pretreatment was applied.

역삼투막 공정에서 Direct Osmosis의 역방향 Flux 기초특성 (Characteristics of Reverse Flux by using Direct Omosis in RO Membrane Process)

  • 강일모;독고석
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.399-405
    • /
    • 2011
  • In a desalination technology using RO membranes, chemical cleaning makes damage for membrane surface and membrane life be shortened. In this research cleaning technology using direct osmosis (DO) was introduced to apply it under the condition of high pH and high concentration of feed. When the high concentration of feed is injected to the concentrate side after release of operating pressure, then backward flow occurred from treated water toward concentrated for osmotic pressure. This flow reduces fouling on the membrane surface. Namely, flux of DO was monitored under pH 3, 5, 10 and 12 conditions at feed concentrations of NaCl 40,000 mg/L, 120,000 mg/L and 160,000 mg/L. As a result, DO flux in pH 12 increased about 21% than pH 3. DO cleaning was performed under the concentrate NaCl 160,000 mg/L of pH 12 during 20 minutes. Three kinds of synthetic feed water were used as concentrates. They consisted of organic, inorganic and seawater; chemicals of SiO2 (200 mg/L), humic acid (50 mg/L) sodium alginate (50 mg/L) and seawater. As a result, fluxes were recovered to 17% in organic fouling, 15% in inorganic fouling and 14% of seawater fouling after cleaning using DO under the condition of concentrate NaCl 160,000 mg/L of pH 12.

낙동강 강정고령보의 여름철 열수지 일변화 - 열 저장량 변동을 중심으로 - (Daily Variation of Heat Budget Balance in the Gangjeong-Goryung Reservoir for Summertime - Concerning around the Rate of Heat Storage -)

  • 김성락;조창범;김해동
    • 한국환경과학회지
    • /
    • 제24권6호
    • /
    • pp.721-729
    • /
    • 2015
  • Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.

High heat flux limits of the fusion reactor water-cooled first wall

  • Zacha, Pavel;Entler, Slavomir
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1251-1260
    • /
    • 2019
  • The water-cooled WCLL blanket is one of the possible candidates for the blanket of the fusion power reactors. The plasma-facing first wall manufactured from the reduced-activation ferritic-martensitic steel Eurofer97 will be cooled with water at a typical pressurized water reactor (PWR) conditions. According to new estimates, the first wall will be exposed to peak heat fluxes up to $7MW/m^2$ while the maximum operated temperature of Eurofer97 is set to $550^{\circ}C$. The performed analysis shows the capability of the designed flat first wall concept to remove heat flux without exceeding the maximum Eurofer97 operating temperature only up to $0.75MW/m^2$. Several heat transfer enhancement methods (turbulator promoters), structural modifications, and variations of parameters were analysed. The effects of particular modifications on the wall temperature were evaluated using thermo-hydraulic three-dimensional numerical simulation. The analysis shows the negligible effect of the turbulators. By the combination of the proposed modifications, the permitted heat flux was increased up to $1.69MW/m^2$ only. The results indicate the necessity of the re-evaluation of the existing first wall concepts.

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • 제12권4호
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 혼합비료의 성능평가 (The Performance Evaluation of Blended Fertilizers as Draw Solution in Forward Osmosis Desalination)

  • 김승건;이호원
    • 멤브레인
    • /
    • 제28권1호
    • /
    • pp.45-54
    • /
    • 2018
  • 본 연구는 비료를 이용한 정삼투식 해수담수화에서 가장 적합한 유도용액을 찾기 위한 연구이다. 이를 위하여 삼투압, 용해도 및 pH를 고려하여 20종의 혼합 비료를 선정하고, 수투과선속과 질소, 인 및 칼륨의 역용질선속과 비역용질선속을 측정하여 각 혼합비료 유도용액의 성능을 평가하였다. KCl을 함유한 혼합비료의 수투과선속이 다른 혼합비료에 비해 높게 나타났다. ${NO_3}^-$를 함유한 혼합비료 유도용액의 질소 역용질선속과 비역용질선속은 ${NO_3}^-$를 함유하지 않은 혼합비료 용액에 비해 상대적으로 높게 나타났다. 또한 $NH_4H_2PO_4$$KNO_3$를 각각 함유한 혼합비료 유도용액의 인 및 칼륨에 대한 역용질선속과 비역용질선속은 $NH_4H_2PO_4$$KNO_3$를 함유하지 않은 혼합비료 용액에 비해 상대적으로 높게 나타났다. $(NH_4)_2HPO_4$와 KCl의 혼합비료 유도용액은 비료의 필수성분인 질소, 인 및 칼륨을 모두 포함하고 있고, 수투과선속이 클 뿐만 아니라 질소, 인 및 칼륨에 대한 역용질선속이 작아 정삼투식 해수담수화용 유도용액의 유도물질로서 가장 적합하다고 판단된다.

세라믹 분리막의 분산형 용수공급 시스템 적용을 위한 전처리 연계공정의 고플럭스 평가 (Evaluation of High Flux Combined with Pretreatment Process for Application of Decentralized Water Supply System with Ceramic Membrane)

  • 강준석;박서경;이정은;강소연;이정준;쿠엔 보;김성수;김한승
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.61-72
    • /
    • 2018
  • In this study, applicability of the decentralized water supply system were investigated by the high flux evaluation using ceramic membrane with combined pretreatment process. A) filtration process increased the transmembrane pressure of 1.4 kPa and 89.5 kPa on 2 and $5m^3/m^2{\cdot}d$ of filtration flux, respectively, the physical backwashing recovery rate were less than 28.6%. The (B) Coag./Floc. - Sedi. combined process with 4 mg / L of A-PAC showed that the transmembrane pressure increased to within 6 kPa, the physical backwashing recovery rate was over 37.9 % higher than (A) Filtration process. (C) Coag./Floc. combined process showed an increase of transmembrane pressure compared with (B) Coag./Floc. - Sedi. combined process, physical backwashing recovery rate was over 84%. As a result of the membrane fouling analysis using the resistance in series model, the combined pretreatment process showed that the cake resistance (Rc) was more than 92% at membrane filtration flux of $2m^3/m^2{\cdot}d$. In the (C) Coag./Floc. combined process, cake resistance(Rc) was over 86% on high flux conditions. The coagulation floc contained in influent was removed by the membrane, and the cake layer formed with the removed floc was identified as reversible fouling resistance which could be recovered by physical backwashing. The decentralized water supply system, which has the limitation of site area and installation space, is considered to could be operation of high flux of ceramic membrane by applying (C) Coag./Floc. combined process without sedimentation process.

Effect of intermittent operation modes on performance of reverse osmosis (RO) membrane in desalination and water treatment

  • Yang, Heungsik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2022
  • Seawater desalination is doubtlessly a viable option to supply fresh drinking water. Nevertheless, RO (reverse osmosis) desalination plants in specific areas may be intermittently operated to match the imbalance between water demand and supply. Although a handful of works have been done on other membrane systems, few studies have attempted to mitigate fouling in intermittent RO systems. Accordingly, the objectives of this paper were to examine the effect of the intermittent operation on RO fouling; and to compare four intermittent operation modes including feed solution recirculation, membrane storage in the feed solution, deionized water (DI) recirculation, and membrane storage in DI water. Results showed that intermittent operation reduced RO fouling under several conditions. However, the extents of fouling mitigation were different depending on the feed conditions, foulant types, and membrane lay-up methods. When the feed solution was recirculated during the lay-up, the restoration of the flux was less significant than that by the feed solution feed-up. The use of deionized water during the lay-up was effective to restore flux, especially when the feed solution contains scale-forming salts (CaSO4) and/or colloidal silica.

산림토양에서의 Phenanthrene, Pyrene, Benzo(a)pyrene의 휘발 속도: 토양온도와 대기습도의 영향

  • 이신향;김현숙;이동수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.99-102
    • /
    • 2001
  • The soil-to-air fluxes of three PAHs(Phenanthrene, Pyrene, Benzo(a)pyrene) from a laboratory contaminated forest soil were investigated in experimental microcosms. The effects of soil temperature(45$^{\circ}C$, $25^{\circ}C$, 5$^{\circ}C$) and relative humidity(0%, 100%) were investigated according to existence of the humic layer(O layer) over the mineral layer(A layer). Volatilization flux experiments were carried out for a period of 96 hrs. The resulting PAHs volatilization fluxes from the different conditions were quantified and compared. In the mineral layer, highest volatilization flux among the individual PAHs was Phenanthrene >Pyrene> Benzo(a)pyrene on the conditions of 45 $^{\circ}C$, RH=100%. In the humic layer over the mineral layer, maximum volatilization flux was Phenanthrene on the condition of 45$^{\circ}C$, RH=0%. Results from flux experiments showed that volatilization fluxes of PAHs were dependent on soil temperature. Existance of humic layer over the mineral layer delayed transportation to the air of especially heaveir molecular PAHs. But, if humic layer is contained water sufficiently, it is possible that volatilization fluxes are enhanced by water convective flux according to variation of soil temperature and air relative humidity.

  • PDF