• Title/Summary/Keyword: water flow rate

Search Result 3,041, Processing Time 0.034 seconds

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II) (전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로-)

  • 배기서;이태상;노덕길;홍영기
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

Decomposition Characterist of Toluene Using a Glidarc Water-jet Plasma (Glidarc 워터젯 플라즈마를 이용한 톨루엔 분해 특성)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2008
  • Volatile organic compounds emitted to the atmosphere can cause adverse effects on human health and participate in photochemical smog formation reactions. The destruction of a series of VOCs has been carried out by non-thermal plasma in other researches. And the characteristic of non-thermal plasma was operated at atmospheric pressure and low temperature. A new type non-thermal plasma reactor was investigated combined Glidarc plasma with water jet in this research. Also, it was found that the water-jet had an significant effect on the toluene removal efficiency. But too much water content does not favor toluene decomposition by decreasing of reaction temperature. The input toluene concentration, gas flow rate, water flow rate and specific energy input were used as experiment variables. The toluene removal efficiency, energy efficiency and specific energy input were 75.3%, 146.6 g/kWh and $1.12kWh/m^3$ at a water flow rate of 100 mL/min.

Performance Evaluation of Multi Effect Distillation for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 다중효용 담수기 성능평가)

  • Joo, Hong-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.74-79
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3/day$ capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3/hour$ sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8m^3/hour$ for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3/day$ of fresh water. And, Performance ratio of Development Multi effect distillation was about 2.0191.

  • PDF

An Experimental Study on Heat Transfer Performance of Fluidized Bed Heat Exchanger for Heat Recovery from Multi-Heat Sources (다중열원 열회수형 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.57-62
    • /
    • 2017
  • The heat transfer performance of a multi-heat-source fluidized bed heat exchanger was analyzed. The fluidized bed heat exchanger examined in this study can simultaneously recover the waste heat from gas, water vapor, and hot water. The effects of waste water flow rate, gas flow rate, and cooling water flow rate were examined to find their experimental correlations with the heat transfer coefficient. A computer program using the correlations was developed in this study to predict the thermal performance of the fluidized bed heat exchanger. The calculated heat transfer rates of gas, water vapor, waste water, and cooling water were compared with the measured values. It was found that the error of the calculated values was less than 12%.

Research on Real-time Flow Rate Measurement and Flood Forecast System Based on Radar Sensors (레이다 센서 기반 실시간 유량 측정 및 홍수 예측 시스템 연구)

  • Lee, Young-Woo;Seok, Hyuk-Jun;Jung, Kee-Heon;Na, Kuk-Jin;Lee, Seung-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.288-290
    • /
    • 2022
  • As part of the SOC digitization for smart water management and flood prevention, the government reported that automatic and remote control system for drainage facilities (180 billion won) to 57% of national rivers and established a real-time monitoring system (30 billion won). In addition, they were also planning to establish a smart dam safety management system (15 billion won) based on big data at 11 regions. Therefore, research is needed for smart water management and flood prevention system that can accurately calculate the flow rate through real-time flow rate measurement of rivers. In particular, the most important thing to improve the system implementation and accuracy is to ensure the accuracy of real-time flow rate measurements. To this end, radar sensors for measuring the flow rate of electromagnetic waves in the United States and Europe have been introduced and applied to the system in Korea, but demand for improvement of the system continues due to high price range and performance. Consequently, we would like to propose an improved flow rate measurement and flood forecast system by developing a radar sensor for measuring the electromagnetic surface current meter for real-time flow rate measurement.

  • PDF

Computer Simulation of Water Pollution by Opening the Water Gate of Bunam Lake in Seosan City. (서산 부남호 수문을 통한 오염물질 확산 모델링)

  • Han, Doo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1006-1015
    • /
    • 2010
  • We studied sea water pollution by opening the water gate of Bunam Lake in Seosan City. SS and COD were simulated. If we control the flow rate to 100ton/s, and the gate opening time to 3 hours, SS of 50ppm can be clear with in 19hours. Also, COD of 8ppm can flow for 1 hour without damaging total sea water(COD less than 2ppm). Thus, If we control the flow rate and flow time, the fish cultivation will be free from danger of water pollution.

Ethanol Pool Fire Extinguishing Experiment Using Twin-fluid Nozzle Supplied with Water and Air (물과 공기가 공급되는 2유체노즐을 활용한 에탄올 풀화재 소화 실험)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • In this study, ethanol pool fire extinguishing experiments were conducted using a twin-fluid nozzle. Ethanol pool fires, 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size (80 mm and 120 mm in fuel pan diameter, respectively), were tested, and the flow rates supplied to the twin-fluid nozzle for fire extinguishing were 156-483 g/min and 20-70 L/min for water and air, respectively. The heat release rate increased with increasing fire source area, and heat release rates of 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size were measured to be 1.01 kW and 5.51 kW, respectively. For both fire source cases in the present experimental range, regardless of the water flow rates, the ethanol fires were extinguished successfully under the high air flow rate condition (e.g., above 40 L/min). On the other hand, under all water flow rate conditions, the fire extinguishing time and water consumption decreased with increasing air flow rate, which were approximately 23 s and 185 g under high air flow rate conditions (e.g., above 50 L/min), respectively. Based on the water consumption per heat release rate, the present experimental data were compared with the previous ones using a single-fluid nozzle, and it was found that the twin-fluid nozzle could extinguish a fire with a lower water consumption than a single-fluid one.

Development of the Seepage Flow Monitoring Method by the Hydraulic Head Loss Rate (수두손실률에 의한 침투류 감시기법 개발)

  • Eam, Sung-Hoon;Kang, Byung-Yoon;Kim, Ki-Wan;Koo, Ja-Ho;Kang, Shin-Ik;Cha, Hung-Youn;Jung, Jae-Hyun;Cho, Jun-Ho;Kim, Ki-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.37-48
    • /
    • 2010
  • In this study, the seepage flow monitoring method by the hydraulic head loss rate was developed for the purpose of application to offshore construction site enclosed by cofferdams in which seepage force varies periodically. The amount of the hydraulic head loss rate newly defined in this graph was in a range between 0 and 1. The zero of the rate means the existence of flow with no seepage resistance. The 1 of the rate means no seepage flow through the ground. The closer to 1 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows is stable. The closer to 0 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows was unstable and the higher the possibilities of existence of empty space or of occurrence of piping on the seepage flow pass in the ground is. The hydraulic head loss graph makes it possible to monitor sensitively the situation of seepage flow state, and the graph helps to understand easily the seepage flow state at the specific section on the whole cofferdam.

Development and Application of Coliform Load Duration Curve for the Geumho River (금호강 유역의 대장균 부하지속곡선 개발 및 적용)

  • Jung, Kang-Young;Im, Tae-Hyo;Kim, Gyeong-Hoon;Lee, In-Jung;Yoon, Jong-Su;Heo, Seong-Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.890-895
    • /
    • 2012
  • Duration curves describe the percentage of time that a certain water quality (total/fecal coliform (=TC/FC)) or discharge is exceeded. The curves methodology are usually based on daily records and are useful in estimating how many days per year and event will be exceeded. The technique was further applied to estimated TC/FC loading to the Geumho River, using the daily mean flow rate and TC/FC concentration data during January, 2001 and December, 2011 for the Geumhogang6 (=Seongseo water level station) where an automated monitoring station is located in Gangchang-bridge. Low flow of the Seongseo (=11.1 cms) was equivalent to 75.3% on an exceedance probability scale. Load Duration curve for TC/FC loading at the Seongseo was constructed. Standard load duration curve was constructed with the water quality criteria for class III (TC/FC concentration = 5000/1000 CFU/ 100 mL). By plotting TC/FC observed load duration curve with standard load duration curve, it could be revealed that water quality do not meet the desired water quality for 68.8/11.2% on an exceedance probability scale. IF linear correlation between flow rate and coliform concentration is assumed, it can be interpreted that water quality exceed desired criteria when daily average flow rate is over 11.9/109.9 cms.

Numerical investigation of the large over-reading of Venturi flow rate in ARE of nuclear power plant

  • Wang, Hong;Zhu, Zhimao;Zhang, Miao;Han, Jinlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Venturi meter is frequently used in feed water flow control system in a nuclear power plant. Its accurate measurement plays a vital role in the safe operation of the plant. This paper firstly investigates the influence of the length of each section of pipeline, the throat inner diameter of Venturi and the flow characteristics in a single-phase flow on the accuracy of Venturi measurement by numerical calculation. Then the flow and the accuracy are discussed in a multi-phase flow. Numerical results show that the geometrical parameters and the characteristics of complex turbulent flow in the single-phase flow have little impact on the accuracy of Venturi flow rate measurement. In the multi-phase flow, the calculated flow rate of Venturi deviated from the actual flow rate and this deviation value is closely related to the amount of steam in the pipeline and increases sharply with the increase of the amount of steam. The over-reading of Venturi flow rate is present.