• Title/Summary/Keyword: water flow rate

Search Result 3,037, Processing Time 0.039 seconds

A Study on Comparison of the Characteristic Test of Discharge Water Flowmeters (Electromagnetic Flowmeter, Parshall Flume) (방류수 유량계(전자기유량계, 파샬플룸)의 특성평가 연구)

  • An, Yang-ki;Kim, Jee-young;Kim, Kum-hee;Jang, Hee-soo;Jung, Jung-pil;Choi, Jong-woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.57-62
    • /
    • 2015
  • The test of comparing liquid flow calibration system (approved by KOLAS) for accuracy and structure change test was performed in the test bed in order to evaluate the typical characteristics of the electromagnetic flow meters and parshall flume that are generally used in the water discharging facilities. The results of the accuracy comparing test with liquid flow calibration system showed the error of less than 2%. Pharshall plume got error up to -8.3% (low flow) from the flow rate test, but less than 4% from the accumulated flow test because of offset error at high flow rate and low flow rate. Evaluation of structual change test was tested with only parshall flume using structure and it consisted of installation angle (parshall flume and level sensor) and position change. Installation angle, water level sensor angle and position changing test for parshall flume had errors of 3.1%~-9.2%, 0.4%~-5.6% and 0.2%~1.3% respectively. Especially, the error showed the largest increase when the water level sensor measured the point of decreased flow by the structure change. Therefore, error factors (change of straight pipe length, installation of obstacle or effect of foreign substances on water level sensor) that can often occur in the field should be derived and the research for optimized installation method should be carried out continuously.

Experimental Study on the Thermal Storage Efficiency Through Variable Porous Mainfolds in a Test Storage Tank (실험 저장조내의 유입구 형상변화에 따른 열 저장효율에 관한 실험적 연구)

  • Pak, Ee-Tong;Hwang, Sung-Il;Choi, Young-Il
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.37-43
    • /
    • 1989
  • This paper dealt with thermal storage efficiency due to difference ($T_{\infty}-Ti$) between the mean temperature of water in the storage tank [$0.5m{\times}0.5m{\times}1.0m$] and the temperature of water flowing into the tank, flow rate of water flowing into the tank and shape of porous manifold which water flow into the tank through. As results of experiments; (1) When the flow rate was constant and the diameter of porous section decreased by 8mm, 6mm, and 4mm, the thermal storage efficiency increased. (2) When the diameter of porous section was constant and the difference ($T_{\infty}-Ti$) between the mean temperature of water in the storage tank and the temperature of water flowing into the tank increased by -30, -20, -10, 5, 10, 15 ($^{\circ}C$), the thermal storage efficiency increased. (3) When the($T_{\infty}-Ti$) was constant and the flow rate decreased by 0.8, 0.4, 0.25(LPM), the thermal storage efficiency increased. (4) When the shape of porous section was rigid, the thermal storage efficiency was the most effective, and with establishing flexible porous section or mesh, the effective thermal storage efficiency was obtained.

  • PDF

터널 건설에 따른 지하수-지표수 상호 작용 및 영향에 관한 연구

  • Kim, Tae-Hee;Kim, Young-Sik;Ha, Gyoo-Chul;Kim, Kue-Young;Koh, Dong-Chan;Yang, In-Jae;Hong, Soon-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.839-846
    • /
    • 2004
  • The objective of this study is the evaluation of the tunneling effect on the groundwater-surface water interaction. The designed tunnel line is laid beneath the Gapo-cheon, which runs throughout study area. And, the pre-evaluation of the tunnel-influence on the Gapo-cheon is urgently needed. However, it is very difficult to find out the similar domestic and/or foreign cases. In this study, we would exclude the numerical modeling technique with insufficient data. Instead of the evaluation of the tunneling effect on the groundwater-surface water interaction with the numerical modeling, we monitored the flow rate of surface water at various point. We measured the flow rate of surface water at 5 points. With the results of surface flow, we can conclude that 39% of flow rate in Gapo-cheon is contributed by the groundwater discharge, as baseflow.

  • PDF

An Experimental Study on the Depth Variation of Water Flow on Steep Open Channel with Constant Width (一定幅 急傾斜 開水路上을 流動하는 물의 깊이 變化에 관한 實驗的 硏究)

  • 박이동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.86-95
    • /
    • 1986
  • A study on film water flow on steep open channel has been seldom found up to date. Therefore, this paper dealed with the depth variation of film thickness of water (city supply normal water) flowing on steep open channel. For this purpose, Experimental apparatus (made of a normal glass with 160cm of length and 15cm of width) was made and the depths of the water flowing on the channel were measured experimentally, changing the channel slope angle from 30 to 80 degree (5 steps) and the flow rate from 0.25 to 10CPM (11 steps). The results obtained, some characteristics of the film flow on the channel are as follows. (1) When thin film water flowed on steep open channel, the depths of flow tended to increase after decreasing and was kept nearly constant in its downstream in case of laminar and transitional flow region. The turining point of the depths of flow from decrease to increase tended to move downward with the increase of Reynolds number. In turbulent flow region, the depths of flow showed reapid decrease in its upper stream, gradual decrease in its midstream and were kept nearly constant in its downstream. (2) While the differences between the depths of flow along the channel slope got small in its upper stream and got large in its downstream in case of laminar flow region, they got very large in its upper stream and were kept nearly constant in its downstream in case of transitional and turbulent flow region. And the move flow rate increases, the more the differences between the depths of flow along the channel slope got large in its upper stream.

A Study on the Heat Exchange Performance for the Liquid Based Solar Thermal Storage (Liquid Based Solar Thermal Storage를 위한 열교환성능(熱交換性能)에 관한 연구(硏究))

  • Kim, Byung-Chul;Jung, Hyun-Chai
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.35-45
    • /
    • 1985
  • A solar hot water storage tank was designed and constructed to examine the heat exchange performances on load side for the solar thermal storage in a single loop solar water heating system. In the tank helically coiled tube was immersed. The hot water was circulated from either top or bottom. The circulation flow rate was varied from 500 ml/min to 20,000 ml/min. The effect of flow rate was observed. The thermal performances according to the flow rate and flow direction were examined. The temperature distributions in the tank and inside of the tubes were plotted along the process of cooling.

  • PDF

Ablation Rate and Intrapulpal Temperature by Addition of Water Spray During Er:YAG Laser Irradiation (Er:YAG laser를 이용한 치아삭제시 물분사량이 삭제율과 치수내 온도변화에 미치는 영향)

  • Kim, Jung-Moon;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.375-381
    • /
    • 2005
  • Er:YAG laser has been considered a promising alternative to dental drill and many researches indicate that adjustment to variable parameters, including water flow rate, pulse energy and pulse repetition rate, can be made to improve ablation ability and efficiency of the laser. Of these parameters, addition of water spray during irradiation has been thought to ablate dental hard tissue more rapidly and safely. The purpose of this study was to investigate tooth ablation amount by Er:YAG laser irradiation as related to varied water flow rates added and, ultimately to find the most effective water flow rate for ablation. In addition, the temperature change of pulp chamber during irradiation was also monitored on the irradiated and opposite pulpal walls, respectively. An Er:YAG laser with contact mode was employed. Extracted human molars were split into two pieces for ablation experiment. Pulse energies of 200 and 300 mJ with a pulse repetition rate of 20 Hz and 5 water flow rates (1.6, 3.0, 5.0, 7.0, and 10.0 ml/min) were applied. Each irradiation was performed for 3 seconds. According to these parameters, experimental groups were divided into 10 subgroups which consisted of 5 specimens. For temperature experiment, another 5 tooth-specimens were prepared in the manner that pulp chamber was open through access cavity preparation and two temperature-measuring probes were placed respectively on the irradiated and the opposite walls of pulp chamber. From the experiment on ablation amount related to different water flow rates, it was shown that the least water flow rate of 1.6 ml/min ablated more than any other water flow rates (p<0.000). When the irradiation for 3 seconds, combined with the pulse repetition time of 20Hz and the water flow rate of 1.6 ml/min was done to tooth specimen, the temperature rise was not noticeable both on the irradiated and the opposite pulpal walls (less than 3$^{\circ}C$) and there was no significant difference in temperature rise between the two pulse energies, 200 and 300 mJ. From the results of this study, it is suggested that tooth ablation with Er:YAG laser can be done effectively and safely at a energy between 200 and 300 mJ/pulse and a pulse repetition rate of 20 Hz when the lasing is conjugated with the water flow rate of 1.6ml/min.

Design and Fabrication of Digital Water Meter Using a Variable Capacitor (가변 콘덴서를 이용한 디지털 수도미터의 설계 및 제작)

  • Park, Keun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.141-146
    • /
    • 2016
  • The AMR(automatic meter reading) system has been increasingly and widely used for its efficient and intelligent management, which is a technology that automatically collects consumption data from a water meter or energy metering device. The digital meter instead of the mechanical meter should be used in the system. Up to now, various types of sensor to measure the water flow rate have been used in the digital water meter, for example, reed switch, photo IR approximate sensor, ultrasonic sensor, electromagnetic sensor, etc. In this paper, a new sensing technology, where a variable capacitor and digital circuit were used for sensing the water flow rate, was proposed. The circuit was designed and verified by Pspice simulation. And a PCB board for the circuit was fabricated. After then, a prototype of digital water meter using a variable capacitor to measure the water flow rate was fabricated. The function tests of the fabricated digital water meter were performed, and it was found that the meter worked properly. Since the new technology has much better properties in terms of cost and power consumption compared to conventional technologies, it should be one of the major digital water meter technologies in the future.

A Study on the Heat Transfer Characteristics of Slurry Ice Generator using Scraper (스크레퍼형 슬러리아이스 제빙기의 열전달 특성 연구)

  • Kim, Joung-Ha;Yun, Jae-Ho;Kim, Min-Jun;Kim, Kyu-Jin;Cho, Hyoug-Seok;An, Seong-Kuk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.144-149
    • /
    • 2006
  • In this study ice making characteristics are experimentally investigated for the ice slurry generating system which is pneumatically operated. The experimentations are conducted under the various test conditions such as chilled water inlet temperature, aqueous solution concentration, flow rate of cooling water, scraper pitch and frequency of cylinder stroke. For the above experimental conditions, ice making characteristics of the slurry ice generating system are evaluated in terms of the overall heat transfer coefficient, heat transfer rate and the amount of slurry ice generation. And the experimental results show that the heat transfer rate of the system increases as the flow rate of cooling water solution increases and the concentration of ethylene glycol and inlet temperature of chilled water decreases.

  • PDF

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of a sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. Flow and water quality data, such as BOD, COD, SS, T-N, and T-P data, for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS, and T-P were correlated positively with the river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluents and downstream streams, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between the river flow rate and the water quality factors (COD, SS, TP) was high at river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF