• 제목/요약/키워드: water flow rate

검색결과 3,037건 처리시간 0.03초

자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구 (A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction)

  • 허형석;박경석;이기수;원종필
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

수직원관형 GAX 흡수기 내부의 열 및 물질전달과정에 대한 수치모델 (A Numerical Model for Heat and Mass Transfer Processes within a Vertical Tube GAX Absorber)

  • 천태식;정은수
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.102-111
    • /
    • 2000
  • A numerical model which simulates the simultaneous heat and mass transfer within a vertical tube GAX absorber was developed. The ammonia vapor and the solution liquid are in counter-current flow, and the hydronic fluid flows counter to the solution liquid. The film thickness and the velocity distribution of the liquid film were obtained by matching the shear stress at the liquid-vapor interface. Two-dimensional diffusion and energy equations were solved in the liquid film to give the temperature and concentration, and a modified Colburn-Drew analysis was used for the vapor phase to determine the heat and mass fluxes at the liquid-vapor interface. The model was applied to a GAX absorber to investigate the absorption rates, temperature and concentration profiles, and mass flow rates of liquid and vapor phases. It was shown that the mass flux of water was negligible compared with that of ammonia except the region near the liquid inlet. Ammonia absorption rate increases rapidly near the liquid inlet and decrease slowly. Both the absorption rate of ammonia vapor and the desorption rate of water near the liquid inlet increase as the vapor mass flow rate increases, but the mass fluxes of the ammonia and the water near the liquid outlet decrease as the mass flow rate of the vapor increases.

  • PDF

냉방시스템의 운전조건에 따른 에너지 소비특성 연구 (The Characteristics of Energy Consumption with Operational Conditions for the Central Cooling System)

  • 박기태;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.39-45
    • /
    • 2019
  • The operational conditions such as cooling tower water pump flow rate, cooling tower fan flow rate, and chiller capacity in heat source equipment, and supply air temperature and chilled water temperature in air conditioner are considered to study the effects on energy consumption for central cooling system by using TRNSYS program. As a result, the optimal values of supply air temperature and chilled water temperature for minimal total energy consumption are 12℃ and 8℃. And if maximum values of cooling tower water pump and fan flow rate is decreased from 100% to 40%, energy consumptions are increased 170MJ/day and 63.2MJ/day, respectively.

전기투석을 이용한 구리이온의 제거 시 운전인자의 영향 (Effect of Operating Parameters on the Removal Performance of Copper Ion by Electrodialysis)

  • 정효상;이강춘
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.54-60
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for copper removal from industrial wastewater, the effect of operating parameters on the removal of copper was experimentally estimated. The limiting current density (LCD) linearly increased with the copper concentration and the flow rate. The time when the copper concentration of diluate reaches to 3 mg/L was linearly proportional to initial concentration of diluate, and the concentration of concentrate did not affect the removal rate. Increase in the flow rate gave a positive effect on the removal rate and became insignificant at flow rates greater than 2.4 L/min. The removal rate increased with the applied voltage. From the operation of the electrodialysis module used in this research, the flow rate of 2.4 L/min and the voltage corresponding to the 80~90% of LCD were found be the optimum operating condition for the copper removal from highly concentrated copper solutions.

금강에 대한 대장균 부하 지속곡선의 개발 및 적용 (Development and Application of Coliform Load Duration Curve for the Geum River)

  • 김건하;윤재영
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.516-519
    • /
    • 2005
  • An useful protocol coiled load duration curve methodology to estimate contaminant loading to a river on an exceedance probability scale was developed in this research. The technique was further applied to estimate total coliform loading to the Geum River, using the daily mean flow rate and total coliform concentration data during January, 1996 and July, 2004 for the Gongju where an automated monitoring station is located. Drought flow of the Gongju (=50.3 cms) was equivalent to 40% on an exceedance probability scale. Load duration curve for total coliform loading at the Gongju was constructed. Standard duration curve was constructed with the water quality criteria for the class 2 (total coliform concentration = 1000 MPN/100 mL). By plotting load duration curve with standard duration curve, it could be revealed that water quality do not meet the desired water quality for 47% on an exceedance probability scale. If linearity between flow rate and coliform concentration is assumed, it can be interpretated that water quality exceeds desired criteria when average mean flow rate is over 51 cms.

마이크로 관류수차의 상수도 관로시스템 적용에 관한 연구 (Application of Micro Cross-Flow Turbine to Water Supply System)

  • 최영도;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.36-43
    • /
    • 2006
  • Recently, micro hydropower and it's useful utilization are taking a growing interest as a countermeasure of global worming by carbon dioxide and exhaustion of fossil fuel. The purpose of this study is to investigate the possibility of extracting micro hydropower wasted by a valve in water supply system using micro cross-flow hydraulic turbine. In order to fulfill the functions of controlling flow rate and pressure in substitute for the valve, air and water are supplied into an air suction hole which is installed on the side wall of micro cross-flow hydraulic turbine. The results show that in case of supplying a lot of air into the air suction hole, about 50% of flow rate and relatively high value of loss coefficient are controlled by the turbine. Moreover, including high possibility of applying the micro cross-flow turbine to water supply system, extended application of the turbine to the water discharge system of drainage and irrigation canal.

유량 측정을 위한 FMCW 레이다 파형 설계 (Design of FMCW radar waveform for flow measurement)

  • 이창기
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.83-90
    • /
    • 2020
  • 현재 상용화되어 있는 유량 측정 레이더 센서는 표면 유속을 이용하여 유량을 측정하는 방법을 사용한다. 이러한 방식으로는 표면 유속만으로 유량을 추정하는 것이기 때문에 단위 시간당 흐르는 물의 양을 정확하게 측정할 수 없다. 보다 정확한 측정을 위해서는 수위와 유속 정보 모두가 필요하며, 이에 따라 일부 상용 계측기는 수위와 유속을 각각 측정하는 두 개의 센서를 이용하여 유량을 산정하는 방식을 채택하고 있다. 본 논문에서는 하나의 FMCW 레이다 센서를 이용하여 수위와 유속을 동시에 측정할 수 있는 방법에 대하여 제안하고, 이를 위한 FMCW 레이다 송신 파형을 설계한다. 또한, 송신 파형을 기반으로 수신 신호를 모델링하여 수위 및 유속 측정 시 발생할 수 있는 문제점들에 대해 고찰하고자 한다.

일 유입유량 변동과 공정내 표면파 전파속도 상관성 분석 (Analysis of relationship between daily inflow rate fluctuation and surface wave transfer velocity in water treatment processes)

  • 박노석;임성은;김성수;황준식;정남정
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.239-243
    • /
    • 2008
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flow-rate from each process abruptly, and ultimately occur the detachment of the attached particles inside each unit process. Also, since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. Therefore this study was conducted to suggest the methodology for accurately predicting the travel time of surface wave occurred from the fluctuation of inlet flow to reach the latter process. Through the experiment, which was carried out for the full-scale water treatment plants(capacity : 2,000m3/d), it could be confirmed that the flow rate fluctuation from equalization tank produce the surface wave. And the wave transfer velocity is a function of the hydraulic radius and the length of each open type tanks which are comprised in the latter processes.

가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가 (Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve)

  • 허전;이석종;성재용;이명호
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.

열전모듈을 이용한 에어컨의 방열부 냉각특성에 대한 연구 (Cooling Characteristics at Hot Side of the Thermoelectric Module for an Air Conditioner)

  • 김서영;강병하;장혁재;김석현
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.214-220
    • /
    • 2002
  • A small air conditioner using thermoelectric module has been designed and built. Three types of cooling methods, such as air cooling, closed-loop water cooling, and evaporative cooling, for hot side of thermoelectric module have been investigated. Among three types of cooling method, the evaporative cooling method is seen to be the most effective to achieve the steady state operation of a thermoelectric air conditioner The system performance with evaporative cooling method are also studied in detail for several oprating parameters, such as input power to the thermoelectric module, water or air flow rate at the hot side, and air flow rate at the cold side. The results obtained indicate that the cooling capacity of a system is increased with an increase in the input power to the thermoelectric module while the system COP is decreased. It is also found that the optimal air flow rate as well as water flow rate at the hot side is needed for the best system performance at a liven operating condition. Both the system COP and cooling capacity are increased as the air flow rate at cold side is increased.