• 제목/요약/키워드: water dynamics

검색결과 1,361건 처리시간 0.03초

댐내 수온성층 파괴를 위한 산기식 수중폭기설비 성능향상 실증연구 (Positive Research About Water Aeration Improvement to Break Thermal Stratification of Dam)

  • 박종호;라병필
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.37-42
    • /
    • 2014
  • In Korea while the dam or reservoir is an important water resource, the value of this water resource is deteriorating by thermal-induced stratification. To ameliorate the water quality of reservoir by breaking stratification the use of air diffuser system is now widespread in Korea. According to the previous research, dynamics of bubble plume and destratification efficiency depended upon two dimensionless groupings; Mh and Pn suggested by Asaeda et al (1993). However, these two variables only include Q, N, H, g, u. and installed Boryeong reservior in appropriate width of water aeration, air dose and number of installations after calculating by applying these figures. This paper is performed to find out effect analysis about water aeration improvement to break thermal stratification.

Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water

  • Jeon, Kiyoung;Yang, Mino
    • Rapid Communication in Photoscience
    • /
    • 제5권1호
    • /
    • pp.8-10
    • /
    • 2016
  • The potential curves of OH bonds of liquid water are inhomogeneous because of a variety of interactions with other molecules and this leads to a wide distribution of vibrational frequency which hampers our understanding of the structure and dynamics of water molecules. Mixed quantum/classical (QM/CM) calculation methods are powerful theoretical techniques to help us analyze experimental data of various vibrational spectroscopies to study such inhomogeneous systems. In a type of those approaches, the interaction energy between OH bonds and other molecules is approximately represented by the interaction between the charges located at the appropriate interaction sites of water molecules. For this purpose, we re-calculated the values of charges by comparing the approximate interaction energies with quantum chemical interaction energies. We determined a set of charges at the TIP4P charge sites which better represents the quantum mechanical potential curve of OH bonds of liquid water.

가속기 X선 영상기법을 이용한 애기장대 뿌리털의 물 흡수과정 가시화 (Visualization of Water-uptake Process in Excised Roots of Arabidopsis using Synchrotron X-ray Imaging Technique)

  • 황배근;김혜구;이상준
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.48-53
    • /
    • 2010
  • Water-uptake through roots, is an essential process of the water flow in plants. Its visualization is very useful for understanding sap flow dynamics at whole plant level. In this study, the tips of Arabidopsis' root hairs were excised and exposed to repeated dehydration and rehydration processes. The water-refilling through individual xylem vessels was visualized using the synchrotron X-ray micro-imaging technique. The high temporal resolution ($2\;{\mu}m$) and beam intensity of the X-ray source allowed to acquisition of consecutive X-ray images of the water-refilling process up to 10 frames/sec. Various flow patterns were observed and the ascending speed of the water-air interfaces was analyzed. The relation between the water-rising height and ascending speed was also analyzed. The present results would provide better alternative for investigating sap flows in roots.

전산유체역학을 이용한 제한수로에서의 선박 침하 해석 (Analysis of Ship Squat in Confined Water Using CFD)

  • 신현경;최시훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.317-324
    • /
    • 2011
  • When a ship proceeds in confined water, like canal, the water ahead of ship is pushed by hull. This pushed water returns to the side and under the hull, and this returned water will make fluid velocity higher at the side and under the hull, compared to the case in the infinite water depth. Due to the higher velocity, the pressure under the hull will decrease, resulting in the ship drop. This phenomenon is called "ship squat" and ship squat will result in various marine accidents. In this paper, for predicting ship squat, numerical calculation was carried out using commercial CFD code, FLUENT. To confirm wave pattern profile around the ship, VOF(Volume of Fluid) method was applied. The calculated results were compared with other paper's results and empirical methods.

CFD를 이용한 농축조 슬러지의 유출흐름특성 해석 (Analysis of the sludge thickening characteristics in the thickener using CFD Model)

  • 박노석;문용택;김병군;김홍석
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.777-782
    • /
    • 2011
  • The residual treatment facilities in WTP(water treatment plant) play an important role in solid-liquid separation. At present, it is difficult to solve problems related with thickening and dewatering of WTP sludge, and discharging waste water to river. The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS(Suspended Solid) occurs under quiescent conditions in the primary clarifier, where SSs are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. In this study, Drawing characteristics of the sludge thickening in the thickener of Water Treatment Plants was simulated by Using CFD(Computational Fluid Dynamics.

Longitudinal Gradients and Seasonal Dynamics of Nutrients, Organic Matter and Conductivity Along the Main Axis of Han-River

  • Kim, Bit-Na;Lee, Sang-Jae;Seo, Jin-Won;An, Kwang-Guk
    • 생태와환경
    • /
    • 제41권4호
    • /
    • pp.457-465
    • /
    • 2008
  • The purpose of the study was to evaluate spatial and temporal dynamics of nutrients (TN, TP), organic pollution (BOD, COD), and ionic dynamics (electrical conductivity, EC) in the North Han-River, South Han-River, and merged downriver using the dataset of $1998{\sim}2007$, obtained from the MEK (Ministry of Environment, Korea). Accord. ing to interannual nutrient analysis, TN varied slightly in the North Han-River and South Han-River, but decreased in the merged downriver along with BOD. Longitudinal analysis in the water quality showed that BOD, COD, and nutrients had linear decreasing trend along the main axis of headwater-to-downriver. Concentrations of TP and TN in the North Han-River averaged $26.97{\mu}g\;L^{-1}$, $1.696mg\;L^{-1}$, respectively, which were minimum in the three watersheds, followed by South Han-River and then the merged downriver in order. Ratios of TN:TP in the watersheds were >40 in all the sites, indicating that nitrogen may be enough for periphyton or phytoplankton growth and phosphorus may be limited partially. After the North Han-River water is merged with South Han-River, the concentrations of BOD, COD, TN, and TP were similar to the values of $S6{\sim}S7$, respectively or a little bit higher, but increased abruptly in Site M4 (Fig. 3). Thus, mean values of all the water quality parameters in the reach of $M4{\sim}M7$ sites were greater than any other sites. Seasonal data analysis indicated that BOD and EC in the downstream ($S3{\sim}S7$) was greater in the premonsoon than two seasons of the monsoon and postmonsoon, and no significant differences in BOD between the three seasons were found in the upstream ($S1{\sim}S2$). Empirical models of COD in the merged downriver was predicted ($R^2=0.87$, p>0.01, slope = 0.84, intercept = -1.28) well by EC. These results suggest that EC to be measured easily in the field may be used for estimations of nutrients and organic matter pollutions in the merged downriver and these linear models are cost-effective for the monitoring of the parameters.

유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향 (Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River)

  • 옥기영;이삼희
    • 한국수자원학회논문집
    • /
    • 제45권5호
    • /
    • pp.445-454
    • /
    • 2012
  • 본 연구는 상류역에 댐이 존재하지 않는 충적하천에서 과거 이치수 위주의 하천정비사업이 하도지형의 장기적인 변화에 미치는 영향과 그원인을 유사계의 관점에서 파악하는 것을 목적으로 하였다. 영산강 유역의 지석천 중하류역을 대상으로 하도선형, 사주형태와 식생활착율 등의 하도의 평면형상 변화를 분석하고, 하상재료 및 하상변동 조사를 실시하였다. 자연적인 충적하천 당시(1966년)와 제방과 저수로, 취수보 건설 등의 하천정비사업으로 변모된 최근(2002년)의 항공사진의 비교분석결과, 유로형태의 변화(단일사행에서 다지형화), 하도선형의 만곡도 감소(9.2%), 지천사주의 확장, 그리고 사주의 식생활착(97%) 현상이 발견되었다. 이와 같은 하도의 주수로 고정화와 사주내 식생이입은 댐하류 조절하천에서 나타나는 대표적인 평면 하도특성으로, 대상구간에서도 댐하류역과 유사한 유황의 변화 또는 유사량 감소가 영향을 미치고 있음을 추정할 수 있다. 유황변동 조사결과, 비록 댐하류 하천에서 나타나는 연간 수위변동의 균일성은 보이지 않았지만, 과거에 비해 홍수빈도와 규모가 감소하였다. 하상재료의 입경은 4~5배정도 조립화 되었고, 하상변동 조사결과 전체적으로 하상저하가 발생하였으나 지천합류부에서 국부적인 하상상승을 보였다. 이러한 결과들은 비록 댐으로 조절되지 않는 충적하천에서도, 하도내의 하천정비사업으로 인하여 유사 공급량의 감소, 지천과 본류간의 유사이동능력의 불균형, 그리고 하도내 지형형성 과정의 저하 등과 같은 유사계의 인위적인 교란이, 장기적으로 댐하류 조절하천과 유사한 하도의 평면하도 형상의 변화를 유발하고 있음을 의미한다.

침전지의 유동 특성과 Lagrangian Method를 이용한 침전효율 예측에 관한 연구 (A Study on Prediction of Sedimentation Efficiency for Sedimentation Basin using Lagrangian Method)

  • 최종웅;홍성택;김성수;김연권;박노석
    • 대한환경공학회지
    • /
    • 제39권5호
    • /
    • pp.229-236
    • /
    • 2017
  • 국내에서 설치 운영 중인 D정수장의 장방형 침전지를 대상으로 설계유량($15,864m^3/day$)과 운영유량($33,333m^3/day$))에 대하여 CFD 해석 방법을 사용하여 침전지의 유동특성 및 tracer 모의를 수행하였으며, 침전지의 유입부로 유입되는 플럭을 입자로 가정하여 모사하는 Lagrangin 기법을 적용하여 침전지의 효율을 검토하였다. 그 결과 침전지내 흐름을 plug flow 영역으로 만들기 위한 평균 속도값을 0.00193 m/s, 0.00417 m/s로 도출되었다. 또한 각 유량 조건에 대해 Tracer test를 모의한 결과 ${\beta}$(유효접촉인자) 값은 각각 0.51, 0.46, Morrill Index값은 각각 6.05와 3.21, 단락류 Index는 0.54와 0.34로 나타났다.

원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가: (II) 가뭄 (Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (II) Drought)

  • 신용철;최경숙;정영훈;양재의;임경재
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.70-79
    • /
    • 2016
  • Based on the soil moisture data assimilation suggested in the first paper (I), we estimated root zone soil moisture and evaluated drought severity using remotely sensed (RS) data. We tested the impacts of various spatial resolutions on soil moisture variations, and the model outputs showed that resolutions of more than 2-3 km resulted in over-/under-estimation of soil moisture values. Thus, we derived the 2 km resolution-scaled soil moisture dynamics and assessed the drought severity at the study sites (Chungmi-cheon sites 1 and 2) based on the estimated soil/root parameters and weather forcings. The drought indices at the sites were affected mainly by precipitation during the spring season, while both the precipitation and land surface characteristics influence the spatial distribution of drought during the rainy season. Also, the drought severity showed a periodic cycle, but additional research on drought cycles should be conducted using long-term historical data. Our proposed approach enabled estimation of daily root zone soil moisture dynamics and evaluation of drought severity at various spatial scales using MODIS data. Thus, this approach will facilitate efficient management of water resources.

Design and Analysis of Heat Exchanger Using Sea Water Heat Source for Cooling

  • Kim, MyungRae;Lee, JuHee;Yoon, JaeOck
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.25-34
    • /
    • 2016
  • Purpose: The temperature in Seoul has risen 3 times more than the average global temperature increase for the past 100 years. Today, summer starts 15 days earlier than the early 20th century and is 32 days longer. This tendency causes rapid increase of cooling energy demand. Following this effect, seawater heat resources are to be used as an countermeasure for global warming. Incheon Port near the Western Sea has the lowest water temperature in the winter in South Korea in which it is suitable to use seawater cold heat resources. Method: The cold heat resource is gained from seawater when the water temperature is the lowest in the winter time and saved in a seasonal thermal storage. This can be used as cold heat resource in the summer time. A heat exchanger is essential to gain seawater cold energy. Due to this necessity, sea water heat resource heat exchangers are modeled by heat transfer equations and the fluid characteristics are analyzed. Also, a CFD (computational fluid dynamics) program is used to conduct simulation on the fluid characteristics of heat exchangers. The analyzed data of deducted from this process are comprehensively analyzed and discussed. Result: Regarding the performance of the heat exchanger, the heat exchanger was operated following the prediction within the range of heat transfer rate of minimum 3.3KW to maximum 33.6KW per device. In the temperature change analysis of the heat exchanger, fluid analysis by heat transfer equations almost corresponded to the temperature change by CFD simulation. Therefore, it is considered that the results of this study can be used as design data of heat exchangers.