• Title/Summary/Keyword: water dynamics

Search Result 1,361, Processing Time 0.029 seconds

Dynamics of Phytoplankton Community in Youngsan River (영산강의 식물플랑크톤 군집 동태)

  • Kim, Yong-Jae
    • ALGAE
    • /
    • v.18 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • Dynamics of phytoplankton communities were investigated at five stations in Youngsan River from December 1995 to November 1996. Phytoplankton were identified to the total of 466 taxa, which were composed of 136 genera, 438 species, 27 varieties and 1 forma. The standing crops ranged 1,163-50,765 cells ${\cdot}ml^{-1}$ during the investigation periods. The variation of classes was in order to Chrysophyceae - Bascillariophyceae - Chlorophyceae at St. 1 and was only Bacillariophyceae at the other stations. The dominant species were 12 taxa including Aulacoseira ambigua, A. garnulata, Cyclotella meneghiniana, C. pseudostelligera, Chlorella vulgaris, Dinobryon sertularia, Flagilaria elliptica, Monoraphidium contortum, Micractinium pusillum, Nitzschia palea, Scenedesmus grahneisii and Stephanodiscus hantzschii f. tenuis. The standing crops of dominant species ranged from 10.6% to 94.7%. The genus Dinobryon in Chrysophyceae was dominant species at St. 1 in December 1995, but not recorded in the other months. The dominant species were composed with the planktonic diatoms from winter to spring and were the tychoplanktonic and the benthic species at St. 2-5 from summer to fall. The relationships between total standing crops and water temperature, pH, $NH_4$, $NO_2$, $NO_3$ and $PO_4$ showed low positive or negative coefficients. Stephanodiscus hantzschii f. tenuis had low positive or negative coefficients with water temperature, $NH_4$, $NO_2$, $NO_3$ and $PO_4$. The fluctuations of standing crops in the Youngsan river phytoplankton community were not caused by a single factor but controlled by the complex factors with interaction between phytoplankton community and envirowmental factors.

Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)

  • Bae, Y.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-111
    • /
    • 2011
  • Increasing numbers of floating offshore wind turbines are planned and designed these days due to their high potential in massive generation of clean energy from water depth deeper than 50 m. In the present study, a numerical prediction tool has been developed for the fully-coupled dynamic analysis of FOWTs in time domain including aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the focus of the present study is paid to the dynamic coupling between the rotor and floater and the coupled case is compared against the uncoupled case so that their dynamic coupling effects can be identified. For this purpose, a mono-column mini TLP with 1.5MW turbine for 80m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given collinear wind-wave condition. When compared with the uncoupled analysis, both standard deviations and maximum values of the floater-responses/tower-accelerations and tether tensions are appreciably increased as a result of the rotor-floater dynamic coupling, which may influence the overall design including fatigue-life estimation especially when larger blades are to be used.

Conformational Analysis of Trimannoside and Bisected Trimannoside Using Aqueous Molecular Dynamics Simulations

  • Kim, Hyun-Myung;Choi, Young-Jin;Lee, Jong-Hyun;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2723-2728
    • /
    • 2009
  • The conformational properties of oligosaccharides are important to understand carbohydrate-protein interactions. A trimannoside, methyl 3,6-di-O-($\alpha$-D-Man)-$\alpha$-D-Man (TRIMAN) is a basic unit of N-linked oligosaccharides. This TRIMAN moiety was further modified by GlcNAc (BISECT), which is important to biological activity of N-glycan. To characterize the trimannoside and its bisecting one we performed a molecular dynamics simulation in water. The resulting models show the conformational transition with two major and minor conformations. The major conformational transition results from the $\omega$ angle transition; another minor transition is due to the $\psi$ angle transition of $\alpha$ (1 $\rightarrow$ 6) linkage. The introduction of bisecting GlcNAc on TRIMAN made the different population of the major and minor conformations of the TRIMAN moiety. Omega ($\omega$) angle distribution is largely changed and the population of gt conformation is increased in BISECT oligosaccharide. The inter-residue hydrogen bonds and water bridges via bisecting GlcNAc residue make alterations on the local and overall conformation of TRIMAN moiety. These changes of conformational distribution for TRIMAN moiety can affect the overall conformation of N-glycan and the biological activity of glycoprotein.

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

Performance Analysis of a savonius type direct drive turbine for wave energy conversion

  • Zullah, Mohammed Asid;Prasad, Deepak Divashkar;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.2-237.2
    • /
    • 2010
  • Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. The techniques of Computational Fluid Dynamics (CFD) are applied to simulate a wave energy conversion device in free surface such as waves. This research uses the commercially available ANSYS CFX computational fluid dynamics flow solver to model a complete oscillating water column system with savonius turbine incorporated at the rear bottom of the OWC chamber in a three dimensional numerical wave tank. The purpose of the present study is to investigate the effect of an average wave condition on the performance and internal flow of a newly developed direct drive turbine (DDT) model for wave energy conversion numerically. The effects of blade angle and front lip shape on the hydrodynamic efficiency are investigated. The results indicated that the developed models are suitable to analyze the water flow characteristics both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for the all cases. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.

  • PDF

Study of Ship Squat for KVLCC2 in Shallow Water (KVLCC2 선형의 천수영역에서의 자세 변화에 대한 연구)

  • Yun, Kunhang;Park, Kyurin;Park, ByoungJae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.539-547
    • /
    • 2014
  • Ship squat is a well known phenomenon, which means an additional sinkage and a change of trim when a ship sails in shallow water. As a series of ship squat study, a HPMM(Horizontal Planar Motion Mechanism) test of KVLCC2 model ship to measure a sinkage and a trim in shallow water was conducted. Additionally a CFD(Computational Fluid Dynamics) analysis was carried out to simulate fluid flows around the ship surface. A change in ship speed, drift angle at three depth conditions(H/T = 1.2, 1.5 & 2.0) is considered for comparing these results. As a result, an increase of the ship speed and the drift angle caused an increase in ship squat in EFD(Experimental Fluid Dynamics), and created a lower pressure on the ship bottom area in CFD. Lastly the sinkage results of KVLCC2 by EFD and CFD are compared to results by three empirical formulas. The tendency of sinkage by EFD and CFD is similar to the results of empirical formulas.

Flat-bottomed design philosophy of Y-typed bifurcations in hydropower stations

  • Wang, Yang;Shi, Chang-zheng;Wu, He-gao;Zhang, Qi-ling;Su, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1085-1105
    • /
    • 2016
  • The drainage problem in bifurcations causes pecuniary losses when hydropower stations are undergoing periodic overhaul. A new design philosophy for Y-typed bifurcations that are flat-bottomed is proposed. The bottoms of all pipe sections are located at the same level, making drainage due to gravity possible and shortening the draining time. All fundamental curves were determined, and contrastive analysis with a crescent-rib reinforced bifurcation in an actual project was conducted. Feasibility demonstrations were researched including structural characteristics based on finite element modeling and hydraulic characteristics based on computational fluid dynamics. The new bifurcation provided a well-balanced shape and reasonable stress state. It did not worsen the flow characteristics, and the head loss was considered acceptable. The proposed Y-typed bifurcation was shown to be suitable for pumped storage power stations.

Plasticity of rice to water extremes: Farmers' genes to mechanisms

  • Bailey-Serres, Julia
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.5-5
    • /
    • 2017
  • Too little and too much water due to climatic events is a significant cause of global food insecurity. Crops are less productive under water-limited conditions and all major crops, with the exception of rice (Oryza sativa), die within a few days of complete submergence. To complement our studies on genes such as SUB1A, (an ERF-VII transcription factor that provides robust submergence tolerance) and AG1 (a TREHALOSE 6-P PHOSPHATASE that promotes establishment of young seedlings underwater), we have retooled INTACT (${\underline{I}}solation$ of ${\underline{N}}uclei$ ${\underline{TA}}gged$ in specific ${\underline{C}}ell$ ${\underline{T}}ypes$) and TRAP (${\underline{T}}ranslating$ ${\underline{R}}ibosome$ ${\underline{A}}ffinity$ ${\underline{P}}urification$) for rice. These technologies enable us to follow dynamics in chromatin, nuclear pre-mRNAs and ribosome-bound mRNAs in meristems and diverse cell types. With these technologies we can better interpret responses to stresses and reestablishment of homeostasis. These include stress acclimation strategies involving changes in metabolism and development, such as dynamics in suberin deposition in sub-epidermal layers of roots that limit water loss under drought and oxygen escape during waterlogging. Our new data uncover dynamic and reversible regulation at multiple levels of gene regulation and provide new insights into processes of stress resilience. Supported by US NSF-PGRP Plasticity (IOS-1238243), Secretome (IOS-1546879) and REU (DBI-146129) grants.

  • PDF

Computational fluid dynamics analysis on the effect of inlet humidity for the performance of PEMFC with serpentine flow-fields (입구 가습량이 고분자 전해질 연료전지의 성능에 미치는 영향에 대한 CFD 해석연구)

  • Oh, Gyu-Hwan;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2828-2833
    • /
    • 2008
  • Water management is one of many operating parameters, which influences the performance and stability of a proton exchange membrane fuel cell (PEMFC). Local humidity condition including liquid water saturation has profound impacts on the distributions of overpotentials, current density, and membrane water content. Computational fluid dynamics simulations were conducted to investigate the effect of the inlet humidity variation on the performance of a PEMFC of $9\;cm^2$ active cell area with serpentine flow fields. The results showed that the performance of the simulated PEMFC remained at an almost same level when the cathode inlet humidity was changed from 100% to 60%, while reaching its maximum at air humidity of 80%. However, further decrease in the cathode inlet humidity below 40% started to significantly deteriorate the performance of the PEMFC. The variations of overpotentials, membrane water content, etc. due to the change in the cathode inlet humidity were also discussed.

  • PDF

Study on CFD Methodology for a Open Channel Type UV Reactor (전산유체역학을 활용한 개수로형 UV소독장비의 해석기법 연구)

  • Hwang, Woochul;Bak, Jeong-Gyu;Kim, Hyunsoo;Lee, Kunghyuk;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.54-59
    • /
    • 2015
  • The performance of UV reactor which is used in water treatment is strongly affected by UV fluence rate and water flow in the UV reactor. Therefore, CFD tools are widely used in designing process of UV reactors. This paper describes the development of a computational fluid dynamics (CFD) methodology that can be used to calculate the performance of open channel type UV reactor used in wastewater treatment plant. All computations were performed using commercial CFD code, CFX, by considering three dimensional, steady, incompressible flow. The Eulerian-Eulerian multi-phase method were used to capture the water-air interface. The MSSS model, provided by UVCalc3D, was used to calculate the UV intensity field. The numerical predictions and calculated UV Dose were compared with experimental dataset to validate the CFD methodology. The reactor performance based on MS2 log reduction was well matched with measurements within 6%.