• Title/Summary/Keyword: water drop test

Search Result 196, Processing Time 0.024 seconds

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

Acceleration Test of Ion Migration for PCB Electronic Reliability Evaluation (PCB 전기적 신뢰성평가를 위한 이온 마이그레이션 가속시험)

  • Lee, D.B.;Kim, J.H.;Kang, S.K.;Chang, S.W.;Lim, J.H.;Ryu, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.64-69
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Print Circuit Borad),electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs in the environment of the hight humidity and the hight temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water drop acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity of electrochemical migration depended on electrolyte quantity which included in the various waters.

  • PDF

Pressure Drop Changes at Engine Fuel Inlet Filter according to Water Contents Management of KSLV-II Liquid Rocket Fuel (한국형발사체 액체로켓 연료의 수분관리에 따른 엔진 연료입구필터 차압의 변화)

  • Hwang, Changhwan;Kim, Inho;Park, Jaeyoung;Kim, Seonglyong;Yoo, Byungil;Cho, Namkyung;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.120-125
    • /
    • 2020
  • 75 tonf liquid rocket engine combustion test was performed at Naro space center Engine Combustion Test Facility for KSLV-II. A gradual pressure drop was observed during off-design combustion test turbopump inlet condition using cooled kerosene at 271 K. It was found that the water content inside kerosene could cause pressure drop at 40 ㎛ grade filter through the water contests analysis of kerosene, kerosene cooling test and dehydration of kerosene.

Flow Pattern and Pressure Drop of Pure Refrigerants and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2289-2295
    • /
    • 2005
  • Two-Phase flow pattern and pressure drop data were obtained for pure refrigerants R134a and R123 and their mixtures as test fluids in a horizontal tube. The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section. The flow map of Baker developed for air-water two-phase flow at atmospheric pressure failed to predict the observed flow patterns at the higher value of the mass velocity used in the present study. The map of Kattan et al. predicted the data well over the entire region of mass velocity selected in the present study. The measured pressure drop increased with an increase in vapor quality and mass velocity. A new two-phase multiplier was developed from a dimensional analysis of the frictional pressure drop data measured in the present experiment. This new multiplier was found successfully to correlate the frictional pressure drop.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Kim, B.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1370-1377
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change of the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural integrity of the material capsule called 04M-17U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19.6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's in-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Lee, K.H.;Kim, B.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.782-787
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change or the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural Integrity of the material capsule called 04M-l7U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19 6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's In-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

  • PDF

An Experimental Study of Pressure Drop Correlations for Wire-Wrapped Fuel Assemblies

  • Chun, Moon-Hyun;Seo, Kyong-Won;Park, Seok-Ki;Nam, Ho-Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.403-409
    • /
    • 2001
  • The main objective of the present study is to perform an experimental evaluation of five existing correlations for the subchannel pressure drop analysis of a wire-wrapped fuel assembly. For this purpose, a series of water experiments have been performed using a helical wire-wrapped 19-pin fuel assembly for various test parameters. Four different test sections with different pitch to rod diameter ratios (P/D) and wire lead length to rod diameter ratios (H/D) have been fabricated. A series of pressure drop measurements were made to obtain friction factors for these four test sections. The new data along with existing data are used to evaluate existing correlations. Both the original and the simplified Cheng and Todreas correlations give the best agreement with experimental data for all flow regions.

  • PDF

Numerical simulation of complex hexagonal structures to predict drop behavior under submerged and fluid flow conditions

  • Yoon, K.H.;Lee, H.S.;Oh, S.H.;Choi, C.R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • This study simulated a control rod assembly (CRA), which is a part of reactor shutdown systems, in immersed and fluid flow conditions. The CRA was inserted into the reactor core within a predetermined time limit under normal and abnormal operating conditions, and the CRA (which consists of complex geometric shapes) drop behavior is numerically modeled for simulation. A full-scale prototype CRA drop test is established under room temperature and water-fluid conditions for verification and validation. This paper describes the details of the numerical modeling and analysis results of the several conditions. Results from the developed numerical simulation code are compared with the test results to verify the numerical model and developed computer code. The developed code is in very good agreement with the test results and this numerical analysis model and method may replace the experimental and CFD method to predict the drop behavior of CRA.

The Fundamental Study on the Development of Leisure Boat's Drop Test Management System based on ISO 12215-5 (ISO 12215-5에 기반 한 레저선박 낙하시험 평가시스템 개발을 위한 기초연구)

  • Kang, Nam-Seon;Park, Chung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.365-370
    • /
    • 2012
  • International Organization for Standardization has recently published ISO 12215-5 which is the small craft-hull construction and scantling. According to ISO 12215-5 AnnexB, the scantling determination can be accomplished by drop test for craft with a length $L_H$ of 2.5m up to 6m and single-skin construction. The current method, however, of visual test has the issue where it is difficult to make an objective evaluation of ship body strength. In this study, in order to develop an evaluation system that can make a quantitative evaluation of the drop test of leisure boats, the domestic/foreign regulations on drop test of leisure boats are analyzed and the drop test evaluation system is designed, and the system applicability is reviewed through 5-meter level aluminum ship, and the issues incurred by the state of the ship and the posture while dropping were checked.

Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers (Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.