• Title/Summary/Keyword: water discharge measurement

Search Result 257, Processing Time 0.046 seconds

Estimation of River discharge using Very High-Resolution Satellite Data in Yangtze River

  • Zhang, Jiqun;Xu, Kaiqin;Watanabe, Masataka;Sun, Chunpeng
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.728-733
    • /
    • 2002
  • The measurement of river discharge is among the most fundamental observations and is necessary for understanding many water-related issues, such as flooding hazards, sediment transportation, and nutrient movement. Traditionally river discharge is estimated by measuring the water stage and converting the measurement to discharge using a stage-discharge rating curve. The possibility of monitoring river discharge from satellites has been largely ignored, because it is difficult to measure water surface information from space with sufficient precision. In this paper, an efficient approach to discharge estimation using mainly satellite data is developed and described. The proposed method, which focuses on the measurement of water-surface width coupled with river width-stage and stage-discharge relationships, is applied to the Yangtze River with good results.

  • PDF

Uncertainty Analysis of Hyung San River Discharge due to the methods of Discharge Measurement (유량측정방법에 따른 형산강유량의 불확실도 분석)

  • Seo, Kyu-Woo;Kim, Su-Hyun;Kim, Dai-Gon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1538-1542
    • /
    • 2005
  • This study is to secure more accurate data of the discharge on the measurement by gaining a reliable hydrological data through the comparison the present method of measuring them and the other way that is based ISO. This study suggests the applicable measurement method of the discharge that has reliance through general elements and the analysis of uncertainty by comparing and assaying the data of the Hyung San River that is measured by the present standard. The result of this study makes us realize that we should complement the measurement method of the discharge securing the reliable and accurate hydrological data Hydrological data is very important things to perform domestic river works or install some structure in river or coast. Securing reliable and accurate hydro-data and making a thesis should go on in other to do any construction in river or coast.

  • PDF

Analysis of Tidal Effect in Hangang Bridge by Automatic Discharge Measurement (자동유량측정에 의한 한강대교 조석영향 분석)

  • Lee, Min-Ho;Kim, Chang-Wan;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.513-523
    • /
    • 2009
  • The measuring point of the Hangang Bridge affected by tide has some special topographic characteristics due to Nodle Island. Furthermore the submerged weirs located on the upstream and downstream. Therefore flow is separated and joined by Nodle Island. Discharge measurement at the point of the Hangang Bridge is very important, because Hangang Bridge is key station in managing the discharge and flood forecasting. In the past, it was too difficult to measure discharge in tidal conditions. HRFCO(Han River Flood Control Office) installed automatic discharge measurement facilities for solving this problem. Measuring equipments operates and measures discharge every 10 minutes at 2 points(southern and northern section close to Nodle Island), and calculates flow discharge using Chiu's velocity law(Chiu, 1988). In order to verify the results of automatic discharge measurements, manual discharge measurements were carried out by ADCP. In addition, the monthly discharge were also compared.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

Analysis and Comparison of Flow Rate Measurements Using Various Discharge Measuring Instrument and ADCP (다양한 유량 측정기기와 ADCP를 이용한 유량 비교 분석)

  • Ji, Ju-Yeon;Park, Seung-Yong;Lee, Gwang-Woo;Park, Gyeong-Min;Hwang, Soon-Hong;Kim, Dong-Ho;Lee, Young-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 2013
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. It makes high quality discharge data, they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and exprerimental research data from measurement are not enough. ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1980's. ADCP flow method is a formal method for flow measurement can easily applyd to relatively large rivers gradually recognized. This equipment can measure the non-contact three-dimensional velocity and water depth data very quickly and efficiently. Also, spatial and temporal resolution of the data is more accurate than any other flow measurement methods which measure flow rate by velocity - area measurement method. In this paper, the velocity is measured using various flow meter and verified the effectiveness by applying from the ADCP in Geum-river. Various flow meters which are med for discharge measurements are VALEPORT002, FLOW TRACKER, PRICE AA and ADCP. The average of five times flow measurement result by ADCP was $10.412m^3/s$, with a standard deviation of 0.68. The repeat test by ADCP and comparison between ADCP and other flow devices to verify the most import factor, flow measurement accuracy. In the result, repeat test of the ADCP showed similar values, flow values were similar to other velocity device results and the average error is 7.7%.

Change of Water Discharge Capability of Sluice Caisson for Tidal Power Plant According to Installation of Rubble Mound (사석마운드 설치에 따른 조력발전용 수문의 통수성능 변화)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.266-269
    • /
    • 2008
  • In this study, the results of experimental investigation on the water discharge capability of sluice caisson for tidal power plant were presented. In particular, the focus of the study was placed on the examination of change in water discharge capability of a sluice caisson according to the installation of rubble mound. For this purpose, a hydraulic experiment was carried out in an open channel flume with a great care to the measurement of discharge and water level in the flume since they greatly affects the estimation of the discharge capability of each sluice caisson. In the analysis, the experimental data of four different sluice models were used, which showed that the installation of rubble mound affects in different manner depending on each sluice caisson model. When each of the four sluice models were placed on the rubble mound respectively, the water discharge increased for one sluice caisson, whereas decreased for other three sluice caissons. Further detailed analysis is needed to quantitatively estimate the influence of installation of rubble mound on the water discharge capability of a sluice caisson.

  • PDF

Open-channel discharges evaluation by the application of smart sensors

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.138-138
    • /
    • 2022
  • Understanding a stream's or river's discharge is essential for a variety of hydrological and geomorphological applications at various sizes. However, depending on the stream environment and flow conditions, it is crucial to use the appropriate techniques and instruments. This will ensure that discharge estimations are as reliable as possible. This study presents developed smart system for continuous measurement of open channel discharge and evaluate streamflow measurement over various techniques. This includes developed smart flow meter as flow point measurements, smart water level sensor (installed on Hydraulic Structure ? Weir) and current meters. Advantages and disadvantages of each equipment are presented to ensure that the most appropriate method can be selected. we found that smart water level sensor is more prominent once used during flood event as compared to smart flow meter and current meters, while current meters seems to show better accuracy once applied for open channel.

  • PDF

The Development of the Automatic Discharge Acquisition & Management System (ADAMS) using Ubiquitous Technique

  • Park, Jae-Young;Oh, Byoung-Dong;Jeon, Seon-Mee;Kim, Jae-Bok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.488-493
    • /
    • 2006
  • Accurate river discharge is the most important factor in managing river basins and for successfully maintaining total maximum daily loads in Korea. It is not easy to measure the discharge directly in large rivers owing to physical and environmental constraints, even after investing much time and money. Recently, to overcome these historical drawbacks in river discharge measurement, we have developed the Automatic Discharge Acquisition & Management System (ADAMS) that scans the river cross-section and measures each cell $(1m{\times}1m)$ velocity using HADCP. The hardware system is composed of an HADCP sensor and winch, as well as a PC and software system for the discharge calculation module and hardware control module. It is controlled remotely via the internet and uses the velocity-depth integration method and the velocity-contour method for calculating river discharges. The characteristics of ADAMS are a ubiquitously accessible system, featuring real time automatic discharge measurement, remote control via the internet. The results using ADAMS at the Jindong stage site show less than 5% uncertainty and are 4 times more efficient than the ADCP & Q-boat system. This system can be used to measure any large river, river mouth or tributary river affected by backwater, all of which have a very difficult measuring real time discharge. The next generation of ADAMS will feature an upgrade to increase portability and GPS integration.

  • PDF