• Title/Summary/Keyword: water deprived

Search Result 38, Processing Time 0.02 seconds

Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii (황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향)

  • Kim, Jun-Pyo;Sim, Sang-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Dracunculiasis in oral and maxillofacial surgery

  • Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.67-76
    • /
    • 2016
  • Dracunculiasis, otherwise known as guinea worm disease (GWD), is caused by infection with the nematode Dracunculus medinensis. This nematode is transmitted to humans exclusively via contaminated drinking water. The transmitting vectors are Cyclops copepods (water fleas), which are tiny free-swimming crustaceans usually found abundantly in freshwater ponds. Humans can acquire GWD by drinking water that contains vectors infected with guinea worm larvae. This disease is prevalent in some of the most deprived areas of the world, and no vaccine or medicine is currently available. International efforts to eradicate dracunculiasis began in the early 1980s. Most dentists and maxillofacial surgeons have neglected this kind of parasite infection. However, when performing charitable work in developing countries near the tropic lines or other regions where GWD is endemic, it is important to consider GWD in cases of swelling or tumors of unknown origin. This paper reviews the pathogenesis, epidemiology, clinical criteria, diagnostic criteria, treatment, and prevention of dracunculiasis. It also summarizes important factors for maxillofacial surgeons to consider.

Optimum Design of Water Distribution Network with a Reliability Measure of Expected Shortage (부족량기대치를 이용한 배수관망의 신뢰최적설계)

  • Park, Hee-Kyung;Hyun, In-Hwan;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.21-32
    • /
    • 1997
  • Optimum design of water distribution network(WDN) in many times means just reducing redundancy. Given only a few situations are taken into consideration for such design, WDN deprived of inherited redundancy may not work properly in some unconsidered cases. Quantifying redundancy and incorporating it into the optimal design process will be a way of overcoming just reduction of redundancy. Expected shortage is developed as a reliability surrogate in WDN. It is an indicator of the frequency, duration and severity of failure. Using this surrogate, Expected Shortage Optimization Model (ESOM) is developed. ESOM is tested with an example network and results are analyzed and compared with those from other reliability models. The analysis results indicate that expected shortage is a quantitative surrogate measure, especially, good in comparing different designs and obtaining tradeoff between cost and. reliability. In addition, compared other models, ESOM is also proved useful in optimizing WDN with reliability and powerful in controlling reliability directly in the optimization process, even if computational burden is high. Future studies are suggested which focus on how to increase applicability and flexibility of ESOM.

  • PDF

Renal Expression of TonEBP and Urea Transporter in the Water-deprived Mongolian Gerbil(Meriones unguiculatus) (절수시 Mongolian Gerbil 콩팥에서 TonEBP와 Urea transporter의 발현 변화)

  • Park, Yong-Deok;Kim, Sung-Joong;Jung, Ju-Young
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.271-280
    • /
    • 2007
  • Tonicity-responsive enhancer binding protein(TonEBP) is a transcriptional factor essential in the function and development of the renal medulla. TonEBP plays a critical role in protecting renal medullary cells from the deleterious effect of hypertonicity. TonEBP is a key regulator of urinary concentration via stimulation of transcription of urea transporter(UT) in a manner independent of vasopressin. UT in the renal inner medulla is important for the conservation of body water due to its role in the urine concentrating mechanism. Mongolian gerbil(Meriones unguiculatus) has been as an model animal for studying the neurological disease such as stroke and epilepsy because of the congenital incomplete in Willis circle, as well as the investigation of water metabolism because of the long time-survival in the condition of water-deprived desert condition, compared with other species animal. In this study, we divide 3 groups of which each group include the 5 animals. In the study of 7 or 14 days water restricted condition, we investigated the TonEBP and UT-A by using a immunohistochemistry in the kidney. In the normal kidney, the distribution of TonEBP is generally localized on nuclei of inner medullary cells. Nuclear distribution of TonEBP is generally increased throughout the medulla in 7 and 14 days dehydrated group compared with control group. Increased nuclear localization was particularly dramatic in thin limbs. In control groups, UT-A was expressed in inner stripe of outer medulla(ISOM) and inner medulla(IM). UT-A was present in the terminal part of the short-loop of descending thin limbs (DTL) in ISOM and also present in the inner medullary collecting duct(IMCD), where the intensity of it gradually increased toward the papillary tip. In the dehydrated kidney, UT-A immunoreactivity was increased in the short-loop of DTL in ISOM and in the long-loop of DTL in the initial part of IM, where was expressed moderate positive reaction in the normal kidney. Also it was up regulated in the IMCD in initial & middle part of IM. However UT-A down regulated in the IMCD, where the intensity of it gradually decreased toward the papillary tip. These findings suggest that increased levels of TonEBP in medulla and UT-A in shot-loop of DTL and IMCD play a important role for maintain fluid balance in the water-deprived mongolian gerbil kidney.

Effects of Nutritional Deprivation During Prenatal and/or Lactating Periods and Environment on Concentration of Neurotransmitters and Behavior in Later Life (태아기와 수유기의 식이제한과 환경이 성장후 신경전달물질의 함량 및 행동에 미치는 영향)

  • Kim, Sun-Hee;Kim, Sook-He
    • Journal of Nutrition and Health
    • /
    • v.16 no.4
    • /
    • pp.243-252
    • /
    • 1983
  • This study was undertaken to invesigate the effect of early nutritional deprivation and environment on neurotransmitter concentrations and behavior in later life. The restoring process of rats fed foods ad libitum after 50% restriction of the casein or the Korean diet during the prenatal and/or the lactating periods was observed. There were two rearing conditions, isolated and enriched, after weaning. Behavioral development was measured by the Y- shaped water maze and the open field test. The neurotransmitters were analyzed after sacrifice at the age of 21 weeks. The results are summarized as follows. 1) The body weight impairment by dietary restriction during the prenatal and lactating periods could be restored within 18 weeks after weaning in case of living in a classical cage. The effect of quantitative restriction was bigger in the Korean diet than in the casein diet. 2) The brain weight was decreased by nutritional deprivation. Environmental enrichment increased it slightly. 3) The concentration of neurotransmitters, norepinephrine, dopamine, and serotonin, were not shown any traces of the dietary restriction at the age of 21 weeks. 4) In the maze test, the deprived rats made more errors than the nourished and the rats fed the Korean diet more than those fed the cascin dict. The environmental enrichment could decrease the number of errors. 5) In the open field test, the dietary deprived groups showed less reaction time, more squares entered in the field, and less number of fecal boli than the nourished among the environmentally isolated rats. However, rats living in the enriched cage without experience of nutritional stress showed the lowest emotionality and the elevated exploratory activity.

  • PDF

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Effect of Korea Red Ginseng Extract on PC12 Cell Death Induced by Serum Deprivation (홍삼 수용성 추출물이 PC12 세포사멸에 미치는 영향)

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • Objectives : This study was to evaluate the pharmacological effect of Korea Red Ginseng aqueous extract (KRGE) on serum-deprived apoptosis of neuronal-like pheochromocytoma PC12 cells and to investigate its underlying action mechanism. Methods : KRGE was prepared by extracting Korea Red Ginseng with hot water and concentrating using a vacuum evaporator. Cell viability was determined after incubation of cells with KRGE or chemical inhibitor in serum-deprived medium for 60 h by counting intact nuclei following lysing of the cell membrane. Caspase activities were measured using chromogenic substrates and signal-associated protein phosphorylation and cytochrome c release were determined by Western blot analyses using their specific antibodies. Results : Serum deprivation induced PC12 cell death, which was accompanied by typical morphological features of apoptotic cell, such as nuclear fragmentation, caspase-3 activation, and cytochrome c release. This apoptotic cell death was significantly inhibited by KRGE and caspase-3 inhibitor, but not by the addition of NMA, ODQ, and PD98059. KRGE promoted phosphorylation of Akt and Bad, and this phosphorylation was inhibited by the PI3K inhibitor LY92004. In addition, this inhibitor also reversed KRGE-mediated protection of PC 12 cells from serum deprivation. These results suggested that KRGE protects PC12 cells from serum deprivation-induced apoptosis through the activation of PI3K/Akt-dependent Bad phosphorylation and cytochrome c release, resulting in caspase-3 activation. Conclusions : KRGE should be considered as a potential therapeutic drug for brain diseases including stroke induced by apoptosis of neuronal cells.

Physiological Relationship Between Thirst Level and Feed Intake in Goats Fed on Alfalfa Hay Cubes

  • Prasetiyono, Bambang W.H.E.;Sunagawa, Katsunori;Shinjo, Akihisa;Shiroma, Sadao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1536-1541
    • /
    • 2000
  • The present study was carried out to measure changes of feed intake and thirst level caused by water deprivation in goats fed on dry feed and to elucidate the relationship between those two parameters. Water deprivation significantly (p<0.01) decreased cumulative feed intake and rate of eating at 30, 60, 90 and 120 min, respectively, after feed presentation. Cumulative feed intake, after completion of 2 h feeding, was reduced by about 20, 21 and 64 % due to water deprivation during feeding for 2 h (WD2), for 22 h (WD22) and for 46 h (WD46), respectively, compared to free access to water (FAW). Compared to the FAW, WD2, WD22 and WD46 increased thirst level by about 5, 5 and 9 times, respectively. Mean thirst level (X, g/30 min) was negatively correlated with cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=1302-0.2 X, $r^2=0.97$, p<0.05). Water deprivation depressed plasma volume and there was a significant positive regression between plasma volume (X, ml) and cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=-1003+0.6 X, $r^2=0.99$, p<0.01). Mean plasma osmolality (X, mOsmol/l) correlated significantly and negatively with cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=27004-84.9 X, $r^2=0.95$, p<0.05). In conclusion, a decrease of feed intake during water deprivation is mainly due to an increase of thirst level quantitatively, and the act of feeding itself induces thirst more than the length of water-deprivation periods in goats fed on dry feeds. The present findings suggest that plasma osmolality and plasma volume which affect thirst level are involved in the decrease of feed intake in water-deprived goats.

Effect of water scarcity during thermal-humidity exposure on the mineral footprint of sheep

  • Nejad, Jalil Ghassemi;Lee, Bae-Hun;Kim, Ji-Yung;Park, Kyu-Hyun;Kim, Won-Seob;Sung, Kyung-Il;Lee, Hong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1940-1947
    • /
    • 2020
  • Objective: Combination of two stressors on alteration of mineral footprints in animals needs due attention to meet maximum production and welfare, particularly in grazing sheep. This study tested whether ewes (Ovis aries) exposed to water deprivation and thermal-humidity stressors had altered mineral footprints in their wool, serum, urine, and feces. Methods: Nine ewes (age = 3 years; mean body weight = 41±3.5 kg) were divided among a control group with free access to water, and treatment groups with water deprivation lasting either 2 h (2hWD) or 3 h (3hWD) after feeding. Using a 3×3 Latin square design, animals were assigned to treatment groups for three sampling periods of 21 days each (n = 9). Blood was collected by jugular venipuncture. Wool was collected at the end of periods 2 and 3. Metabolic crates designed with metal grated floors were used for urine and feces collection. We measured sodium (Na), magnesium (Mg), phosphorus (P), chloride (Cl), calcium (Ca), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn). Results: The wool mineral levels did not differ between the treatment groups, although K was marginally lower (p = 0.10) in the 2hWD group. The serum and urine mineral levels did not differ between the treatments (p>0.05). Fecal K was significantly lower in the 2hWD group than in the other groups (p≤0.05). Conclusion: In conclusion, water deprivation and thermal-humidity exposure altered the excretion of K, but not of other minerals, in the wool, urine, feces, or serum of ewes. Thus, no additional mineral supplementation is needed for water deprived ewes during thermalhumidity exposure.

A Simple Behavioral Paradigm to Measure Impulsive Behavior in an Animal Model of Attention Deficit Hyperactivity Disorder (ADHD) of the Spontaneously Hypertensive Rats

  • Kim, Pitna;Choi, In-Ha;Dela Pena, Ike Campomayor;Kim, Hee-Jin;Kwon, Kyung-Ja;Park, Jin-Hee;Han, Seol-Heui;Ryu, Jong-Hoon;Cheong, Jae-Hoon;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.125-131
    • /
    • 2012
  • Impulsiveness is an important component of many psychiatric disorders including Attention-deficit/hyperactivity disorder (ADHD). Although the neurobiological basis of ADHD is unresolved, behavioral tests in animal models have become indispensable tools for improving our understanding of this disorder. In the punishment/extinction paradigm, impulsivity is shown by subjects that persevere with responding despite punishment or unrewarded responses. Exploiting this principle, we developed a new behavioral test that would evaluate impulsivity in the most validated animal model of ADHD of the Spontaneously Hypertensive rat (SHR) as compared with the normotensive "control" strain, the Wistar Kyoto rat (WKY). In this paradigm we call the Electro-Foot Shock aversive water Drinking test (EFSDT), water-deprived rats should pass over an electrified quadrant of the EFSDT apparatus to drink water. We reasoned that impulsive animals show increased frequency to drink water even with the presentation of an aversive consequence (electro-shock). Through this assay, we showed that the SHR was more impulsive than the WKY as it demonstrated more "drinking attempts" and drinking frequency. Methylphenidate, the most widely used ADHD medication, significantly reduced drinking frequency of both SHR and WKY in the EFSDT. Thus, the present assay may be considered as another behavioral tool to measure impulsivity in animal disease models, especially in the context of ADHD.