• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.032 seconds

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

Cavitation-Erosion Characteristics of the Stainless Steel with Adding Ti Stabilizer Element in Sea Water (안정화 원소 Ti 첨가에 따른 스테인리스강의 해수 내 캐비테이션-침식 특성)

  • Choi, Yong-Won;Yang, Ye-Jin;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.344-348
    • /
    • 2016
  • Stainless steel is widely applied in many industrial fields due to its excellent anti-corrosion and durability characteristics. However, stainless steel is very vulnerable to cavitation attack caused by high speed flow of fluid in the chloride environments such as marine environment. These conditions promote intergranular corrosion and cavitation-erosion, leading to degradation of the structural integrity and service life. In order to prevent these problems, the stabilized stainless steel is applied to the offshore and shipbuilding industries. In this study, Ti was added to 19%Cr-9%Ni as the stabilizer element with different concentrations (0.26%, 0.71%), and their durabilities were evaluated with cavitation-erosion experiment by a modified ASTM G32 method. The microstructural change was observed with the stabilizer element contents. The result of the observation indicated that the amount of carbide precipitation was decreased and its size became finer with increasing Ti content. In the cavitation-erosion experiment, both weight loss and surface damage depth represented an inverse proportional relationship with the amount of Ti element. Consequently, the stainless steel containing 0.71% of Ti had excellent durability characteristics.

RESEARCH ACTIVITIES ON A SUPERCRITICAL PRESSURE WATER REACTOR IN KOREA

  • Bae, Yoon-Yeong;Jang, Jin-Sung;Kim, Hwan-Yeol;Yoon, Han-Young;Kang, Han-Ok;Bae, Kang-Mok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.273-286
    • /
    • 2007
  • This paper presents the research activities performed to date for the development of a supercritical pressure water-cooled reactor (SCWR) in Korea. The research areas include a conceptual design of an SCWR with an internal flow recirculation, a reactor core conceptual design, a heat transfer test with supercritical $CO_2$, an adaptation of an existing safety analysis code to the supercritical pressure condition, and an evaluation of candidate materials through a corrosion study. Methods to reduce the cladding temperature are introduced from two different perspectives, namely, thermal-hydraulics and core neutronics. Briefly described are the results of an experiment on the heat transfer at a supercritical pressure, an experiment that is essential for the analysis of the subchannels of fuel assemblies and the analysis of a system safety. An existing system code has been adapted to SCWR conditions, and the process of a first-hand validation is presented. Finally, the corrosion test results of the candidate materials for an SCWR are introduced.

Bayesian approach for prediction of primary water stress corrosion cracking in Alloy 690 steam generator tubing

  • Falaakh, Dayu Fajrul;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3225-3234
    • /
    • 2022
  • Alloy 690 tubing has been shown to be highly resistant to primary water stress corrosion cracking (PWSCC). Nevertheless, predicting the failure by PWSCC in Alloy 690 SG tubes is indispensable. In this work, a Bayesian-based statistical approach is proposed to predict the occurrence of failure by PWSCC in Alloy 690 SG tubing. The prior distributions of the model parameters are developed based on the prior knowledge or information regarding the parameters. Since Alloy 690 is a replacement for Alloy 600, the parameter distributions of Alloy 600 tubing are used to gain prior information about the parameters of Alloy 690 tubing. In addition to estimating the model parameters, analysis of tubing reliability is also performed. Since no PWSCC has been observed in Alloy 690 tubing, only right-censored free-failure life of the tubing are available. Apparently the inference is sensitive to the choice of prior distribution when only right-censored data exist. Thus, one must be careful in choosing the prior distributions for the model parameters. It is found that the use of non-informative prior distribution yields unsatisfactory results, and strongly informative prior distribution will greatly influence the inference, especially when it is considerably optimistic relative to the observed data.

A Study on the Measurement of SOx-Dew Point (About the Corosin of Briquet -Burning Hot Water Boiler) ($SO_x^-$ 노점 측정에 관한 연구 (연탄 온수보일러의 부식문제에 관하여))

  • Chae Jae-Ou;Yong Gee-Joong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.4
    • /
    • pp.252-263
    • /
    • 1983
  • In the briquet-burning hot water boiler the $SO_x$-dew point is calculated and found to be between $130^{\circ}C\;and\;154^{\circ}C$. The corrosion rate depends on the surface temperature and the concentration of the condensate on the surface. The concentration of the condensate is decided acoording to the difference detween $SO_x$-dew point and the surface temperature. When the surface temperature is $80^[\circ}C$, the concentration of the condensate is also high (0.15N). Therefore the high concentration and high temperature promote the high corrosion rate of $14{\times}13^{-3}g/100cm^2{\cdot}hr$ on the SS41 material. On the other hand, when the surface temperatures are $60^{\circ}C\;and\;40^{\circ}C$, the concentrations and the co..sion rates are reduced dramatically to $0.11\;N,\;8.6{\tiems}10^{-3}g/100cm^2{\cdot}hr$ and $5{\tiems}10^{-4}g/100cm^2{\cdot}hr$ respectively.

  • PDF

Study on the alternatives to trace the origin and to diminish the sediments of drinking water (수돗물의 앙금발생규명 및 저감기술방안)

  • 김갑수;임병진;권은미
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.17-28
    • /
    • 1994
  • There are many possibilities that may lead to low quality of drinking water Recently, some unknown deposits in tap water raised a lot of public concern regarding the safety of drinking water in Seoul. We analyzed the quality of tap water from several areas of Seoul, including the area where public complaints about tap water were high. The results shows that the quality of tap water in Seoul was good, well below the environmental standards. Only the tap water from the area with high public complaints showed turbidity higher than that of other area. Also, result shows that component of deposit in tap water was Al, Fe, Mn, and Zn. Based on the research result we propose several measures that might help to reduce the amount of deposit in tap water as follows : 1 Using coagulant aid when coagulating or adjusting pH when filtering. 2. Replacing old water pipeline with new corrosive- resistant one. 3. Increasing water treatment efficiency by enhancing water treatment system such as automation of water treatment system adjusting production capacity, and improving operational condition of filler basin. 4. Chlorine disinfection at the distribution reservoir would help maintaining the same pH level and chlorine concentration throughout the water pipeline and reduce corrosion of pipe.

  • PDF

Synthesis and Anti-corrosion Properties of Succinic Acid Alkyl Half-amide Derivatives (숙신산 알킬 하프-아마이드 유도체의 합성 및 해수에 대한 방청성능)

  • Baek, Seung-Yeob;Kim, Young-Wun;Chung, Keun-Wo;Yoo, Seung-Hyun;Kim, Nam-Kyun
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.314-324
    • /
    • 2011
  • Several amide derivatives have been used as additives for base oil of metal working fluids and pressure working oils. In this paper, a series of succinic acid alkyl half-amide derivatives were synthesized as over 97% yields by ring-opening reaction of succinic anhydride and several amines and were soluble in 100 N base oil within 1 wt% concentration. The structures of the synthesized amides were confirmed by $^1H$-NMR, FT-IR spectrum and GC analysis. Anti-corrosion properties of the amides in sea water were evaluated through ASTM D665 method and weight loss method. As the results of anti-corrosion properties, the properties of the amides with shorter alkyl chain and high concentration showed better performance than those with longer alkyl chain and low concentration. Also, the dialkyl amides showed better anti-corrosion properties than those of the monoalkyl amides. Inhibition efficiency% (IE%) was over 93% in the concentration of 40 ppm and corrosion rate (CR) was below 0.5 mm/year in the same concentration.

Estimation of Critical Chloride Content for Corrosion of Reinforcing Steel in Concrete by Field Exposure Experiment (현장 폭로실험에 의한 콘크리트 중 철근의 부식 임계 염화물량 평가)

  • Yu, Kyung-Geun;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.585-588
    • /
    • 2008
  • To predict the service life of reinforced concrete structures exposed to chloride environment, quantitative measures of material properties such as the critical chloride content for corrosion in concrete and the diffusion coefficient of chloride ions of concrete and the surface chloride content of the concrete are essential. However, it should be noted that they are influenced by several factors such as concrete mix proportions, cement type, and environmental conditions, etc. Thus, the purpose of this research is to estimate more actually the critical chloride content for corrosion of the reinforcing steel in concrete by field exposure experiment. For this purpose, the prism concrete test specimens were made for water-cement(W/C) ratios of 31%, 42%, 50%, and 70%, and then the field exposure experiment for them were conducted at Youngduk of the east coast for about 3 years. During the test, corrosion monitoring by half cell potential method was carried out to detect the time to initiation of corrosion for test specimens and its chloride content was evaluated by breaking the concrete test specimens when corrosion of the reinforcing steel in concrete was perceived. It was observed from the test results that the critical chloride content for corrosion of reinforcing steel in concrete would be dependent on W/C ratio and almost irrespective of concrete cover.

  • PDF

EXPERIMENTAL STUDY ON THE DISSOLUTION COMPONENTS AND CORROSION PRODUCTS OF SEVERAL AMALGAMS IN ARTIFICIAL SALIVA (인공타액에서 수종 아말감의 부식시 용해성분 및 표면 부식 생성물에 관한 실험적 연구)

  • Cho, Seung-Joo;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.1-26
    • /
    • 1994
  • The purpose of this study was to investigate the dissolution components during corrosion of amalgams and to identify surface corrosion products in the modified Fusayama artificial saliva. Four type of amalgam alloys were used: low copper lathe cut amalgam alloy (Cavex 68), low copper spherical amalgam alloy (Caulk Spherical Alloy), high copper admixed amalgam alloy (Dispersalloy) and high copper single composition amalgam alloy (Tytin). Each amalgam alloy and Hg were triturated according to the manufacturer's direction by means of mechanical amalgamator (Capmaster, S.S.White), and then the triturated mass was inserted into the cylindrical metal mold which was 10mm in diameter and 2.0mm in height and condensed with compression of 150kg/$cm^2$ using oil pressor. The specimens were removed from the mold and stored at room temperature for 7 days and cleansed with distiled water for 30 minutes in an ultrasonic cleaner. The specimens were immersed in the modified Fusayama artificial saliva for the periods of 1 month, 3 months and 6 months. The amounts of Hg, Cu, Sn and Zn dissolved from each amalgam specimen immersed in the artificial saliva for the periods of 1 month, 3 months and 6 months were measured using Inductivity Coupled Plasma Atomic Emission Spectrometry (ICPQ-1000, Shimadzu, Japan) and amount of Ag dissolved from amalgam specimen was measured using Atomic Absorption Spectrophotometry (Atomic Absorption/Flame emission spectrophotometer M-670, Shimadzu, Japan). A surface corrosion products of specimens were analysed using Electron Spectroscopy Chemical Analyser (ESCA PHI-558, PERKIN ELMER, U.S.A.). The secondary image and back scattered image of corroded surface of specimens was observed under the SEM, and the corroded surface of specimens was analysed with the EDX. The following results were obtained. 1. The dissolution amount of Cu was the most in high copper admixed amalgam(Dispersalloy) and the least in high copper single composition amalgam(Tytin). 2. Sn and Zn were dissolved during all the experiment periods, and dissolution amounts were decreased as the time elapsed. 3. Initial surface corrosion products were ZnO and SnO. 4. Corrosion of ${\gamma}$ and ${\gamma}_2$ phase in low copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in low copper spherical amalgam(Caulk Sperical Alloy). 5. Corrosion of ${\gamma}$ and $\eta$' phase in high copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in high copper admixed amalgam(Dispersalloy). 6. Sn-Cl was produced in the subsurface of low copper amalgams and high copper admixed amalgam.

  • PDF

Effect of SUS316L Bipolar Plate Corrosion on Contact Resistance and PEMFC Performance (SUS316L 분리판 부식에 의한 접촉저항 및 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.664-670
    • /
    • 2021
  • Stainless steel was applied as bipolar plate (BP) of polymer electrolyte membrane fuel cell (PEMFC) due to high mechanical strength, electrical conductivity, and good machinability. However, stainless steel was corroded and increased contact resistance resulting PEMFC performance decrease. Although the corrosion resistance could be improved by surface treatment such as noble metal coating, there is a disadvantage of cost increase. The stainless steel corrosion behavior and passive layer influence on PEMFC performance should be studied to improve durability and economics of metal bipolar plate. In this study, SUS316L bipolar plate of 25 cm2 active area was manufactured, and experiments were conducted for corrosion behavior at an anode and cathode. The influence of SUS316L BP corrosion on fuel cell performance was measured using the polarization curve, impedance, and contact resistance. The metal ion concentration in drained water was analyzed during fuel cell operation with SUS316L BP. It was confirmed that the corrosion occurs more severely at the anode than at the cathode for SUS316L BP. The contact resistance was increased due to the passivation of SUS316L during fuel cell operation, and metal ions continuously dissolved even after the passive layer formation.