• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.028 seconds

Performance Change of Application Devices Caused by Magnetorheological Particle Corrosion (자기유변 입자 부식에 따른 응용장치의 성능 변화)

  • Han, Young-Min;Choi, Seong-Cheol
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.193-199
    • /
    • 2016
  • MR(magnetorheological) devices for vehicle applications requires the consistent control performance and the reliable operation. However, the corrosion of iron particles consisting the MR fluid can significantly affect on MR properties. This paper presents an effect of the MR particle corrosion on the performance of MR fluids such as shear stress magnitude which is directly concerned with control performance. As a first step, MR particles are corroded by water-calcium chloride solution. The resulting MR particles are examined by scanning electron microscope (SEM) and their molar ratios are analyzed by the energy dispersive X-ray analysis (EDAX). By dispersing the corroded MR particles into silicone oil, the corroded MR fluid is synthesized for evaluation of MR effect change. A rotational viscometer is adopted to measure shear stress magnitude. Finally, it is demonstrated how much the corrosion affect on performances by comparing the normal MR fluid to the corroded MR fluid, from which performance investigation of the MR devices containing the corroded MR particles will be studied in the second phase of this study.

Effects of High Temperature-moisture on Corrosion and Mechanical Properties for Sn-system Solder Joints (고온고습환경이 Sn계 무연솔더의 부식 및 기계적 특성에 미치는 영향)

  • Kim, Jeonga;Park, Yujin;Oh, Chul Min;Hong, Won Sik;Ko, Yong-Ho;Ahn, Sungdo;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.7-14
    • /
    • 2017
  • The effect of high temperature-moisture on corrosion and mechanical properties for Sn-0.7Cu, Sn-3.0Ag-0.5Cu (SAC305) solders on flexible substrate was studied using Highly Accelerated Temperature/Humidity Stress Test (HAST) followed by three-point bending test. Both Sn-0.7Cu and SAC305 solders produced the internal $SnO_2$ oxides. Corrosion occurred between the solder and water film near flexible circuit board/copper component. For the SAC305 solder with Ag content, furthermore, octahedral corrosion products were formed near Ag3Sn. For the SAC305 and Sn-0.7Cu solders, the amount of internal oxide increased with the HAST time and the amount of internal oxides was mostly constant regardless of Ag content. The size of the internal oxide was larger for the Sn-0.7Cu solder. Despite of different size of the internal oxide, the fracture time during three-point bending test was not significantly changed. It was because the bending crack was always initiated from the three-point corner of the chip. However, the crack propagation depended on the oxides between the flexible circuit board and the Cu chip. The fracture time of the three-point bending test was dependent more on the crack initiation than on the crack propagation.

The Development of Measuring Method of Coated Steel Corrosion in Mortar by Transient Electro-Magnetic(TEM) Method (과도전자탐사법에 의한 모르타르 중의 코팅 철근의 부식 측정 방법 개발)

  • Lee, Sang-Ho;Han, Jeong-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.108-115
    • /
    • 1999
  • To study measurement of coated steel corrosion in mortar, a transient electro-magnetic(TEM) method was adapted. The sensors were made of enamelled wire with diameter of 0.25mm(transmitter), 0.1mm(receiver) and the secondary electro motive force(EMF) was measured with SIROTEMIII. The sensors configuration was used as in loop configuration. After coated steels were corroded by the salt spray during 3, 7, 15, 25days, they were embedded in mortar which were made from sand : cement : water ratio of 2 : 1 :0.5. To investigate coated steel corrosion in mortar, the sensors were used. ( sensorl - $T_x$ : $4{\Omega}$, $R_x$ : $10{\Omega}$, $3{times}3cm$, sensor2 - $T_x$ : $8{\Omega}$, $R_x$ : $10{\Omega}$, $3{times}3cm$, sensor3 - $T_x$ : $4{\Omega}$, $R_x$ : $10{\Omega}$, $6{times}6cm$, sensor4 - $T_x$ : $8{\Omega}$, $R_x$ : $10{\Omega}$, $6{times}6cm$). The obtained results showed that the secondary EMF was decreased with specimens of 3, 7days corroded coationg steel in mortar and then increased with specccimens of 15, 25days corroded one. And it was confirmed that measurement of coated steel corrosion in mortar by a transient electro-magnetic(TEM) method is possible.

  • PDF

Corrosion Resistance Characteristics of Cold Rolled Steel by Cr-free Green Organic/Inorganic Hybrid Coating Solution (크롬 프리 친환경 유/무기 하이브리드 코팅액에 의한 냉연강판의 내식특성)

  • Nam, Ki Woo;Kim, Jung Ryang;Choi, Chang Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In the past, a very popular method for reducing the corrosion on zinc involved the use of chemical conversion layer coatings based on $Cr^{+6}$. However, there is an important problem with using chromium salts as a result of restrictive environmental protection legislation. This study investigated the optimum condition for galvanized steel using an organic/inorganic solution with a Ti composition. In the case of a fixed heat treatment time, the corrosion resistance values of LR-0727(1) and LR-0727(2) were improved as the heat treatment temperature increased, and the optimum minimum temperature decreased with the heat treatment time. At the optimum heat treatment condition of two coating solutions, the heat treatment time of the LR-0727(1) solution was shorter than LR-0727(2) for the same heat treatment temperature. LR-0727(1) coated specimens did not show desquamation, and all of the specimens showed a good adhesive property. In contrast, in the case of the LR-0727(2) coated specimens, desquamation arose. Therefore, the adhesive property of LR-0727(1) was superior to that of LR-0727(2). The pencil hardness had a 3H average for all of the coating solutions and heat treatment conditions. In the case of a corrosion resistance test with boiling water, the coated specimens of LR-0727(1) were discolored, but LR-0727(2) was not. Finally, LR-0727(1) was more moisture proof than LR-0727(2).

Effect of Retained Pre-construction Primer on the Corrosion Protection Properties of Epoxy Coatings

  • Lee, Chul-Hwan;Shin, Chil-Seok;Lee, Ho-Il;Chung, Mong-Kyu;Baek, Kwang-Ki
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.219-226
    • /
    • 2007
  • Pre-construction primer (PCP), or shopprimer, have been applied to steel plates to control temporary corrosion during ship fabrication. For surface preparation at ship block stage, in common shipyard practices, welding beads, burnt and rusted areas shall be blasted or power tool cleaned and the contamination such as zinc salt shall be removed with blasting or power tool. Whereas, the sound film of PCP needs not to be removed or roughened as the paint having good compatibility with PCP is used for the first coat. In many cases, however, full blasting or sweep blasting on the sound PCP treated block assemblies was requested. There still has been argument about the legitimacy of this practice, thus, it is critical to evaluate the quality of the coating system applied on the sound PCP retained condition, comparing with the one applied on the full blasted or sweep blasted condition. In this study, two different epoxy systems for water ballast tank were applied on the surfaces with sound PCP condition, full blasted condition, and sweep blasted condition. Coating performances such as durability, anti-corrosion, cathodic disbondment resistance were evaluated. The test results clearly indicated that the sound film of PCP needed not to be removed or roughened as the paint having good compatibility with PCP based on inorganic zinc silicate.

Evaluation on the Rlationship between Wear Ratio and Polarization Characteristics of Anti-Fouling Paint (방오도료 도막의 마모율과 분극특성의 상관관계에 관한 평가)

  • Jeong, Jae-Hun;Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae;Kim, Hyun-Myung;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • Recently, anti-fouling paints which does not include the poison components such as tin(Sn), copper(Cu) have been increasingly developed in order to inhibit the environmental contamination of the sea water. Moreover, the wear ratios of these anti-fouling paints are very important problem to prolong their life time in economical point of view. In this study, five types of anti-fouling paints as self polishing type were investigated on the relationship between their polarization characteristics and wear ratios. It was verified that there was apparently a good relationship between the wear ratio and polarization characteristics, for example, the wear ratio increased with increasing the impedance ratio, and increased or decreased with the corrosion potential shifting in the negative or positive direction respectively. In addition, the wear ratio decreased with decreasing the corrosion current density. Consequently, it is suggested that we can qualitatively expect the wear ratio by only measuring the polarization characteristics. Therefore, before the examination of the wear ratio was actually carried out in the field, the evaluation of polarization property in the laboratory may give a available reference data for their developments.

Report on the Conservation Treatment for the Artifacts Exhibited in the newly-opened Kimhae National Museum (국립김해박물관(國立金海博物館) 개관(開館) 전시유물 보존처리 보고(報告))

  • Kwon, Hyuk-nam;Ahn, Byong-chan
    • Conservation Science in Museum
    • /
    • v.1
    • /
    • pp.15-26
    • /
    • 1999
  • More than 200 objects selected for the newly-opened Kimhae National Museum were treated for conservation. The objects which represent ancient Kaya culture, were mainly composed of metallic such as gilt bronze, silver, copper alloy and iron. The corrosion products on gilt bronze and copper alloy objects were preserved or removed according to their stability. Minimum treatment was done for preserving the original state of the objects. For silver objects and iron objects with silver-plate decorations, silver surfaces were revealed after treatment of corrosion products and treatments to prevent corrosion of silver and iron were done emphatically. For iron objects, which were stabilized, the original shape of objects was restored and acrylic coating was applied to prevent further corrosion. For the objects which were being corroded, 2-step de-chloride treatments were undertaken. The first step was immersing the objects in a solution of 0.3M sodium hydroxide and the second was the pressure de-chloride treatment using borax-distilled water. The main purpose of those treatments was to get rid of the causes of corrosion. Besides, conservation treatments for potteries, making of special mounting board for exhibition and amendment of various modeling were done too.

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

Effect of Electrolyte Concentration on Water Permeation in Protective Coatings (방식도막에 있어서 물의 침투에 대한 전해질 용액의 영향)

  • 박진환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.206-212
    • /
    • 1998
  • The water permeation in protective coatings, which may greatly influence the corrosion protective property of these coatings, was studied using the electrochemical impedance spectroscopy technique. During the absorption of water in protective coatings immersed in electrolyte solution, the change of coating capacitance with concentration of electrolyte was determined from impedance measurements. When water absorption or desorption of coatings occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thicker film. The amount of water absorbed in coatings changed with concentration of electrolyte. The water taken up in coatings from the solution of lower electrolyte concentration was deserted by contact with the solution of higher concentration. The uptake of water in protective coatings varied depending on the type of coating ingredient especially binder.

  • PDF

A Study on the Method for the Removal of Radioactive Corrosion Produce Using Permanent and Electric Magnets

  • Kong Tae-Young;Song Min-Chul;Lee Kun-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • The removal of radioactive corrosion products from the reactor coolant through a magnetic filter system is one of the many approaches being investigated as a means to reduce radiation sources and exposures to the operational and maintenance personnel in a nuclear power plant. Many research activities in water chemistry, therefore, have been performed to provide a filtration system with high reliability and feasibility and are still in process. In this study, it was devised the magnetic filter system with permanent and electric magnets to remove the corrosion products in the coolant stream taking an advantage of the magnetic properties of corrosion particles. Permanent magnets were used for separation of corrosion products and electric magnets were utilized for flocculation of colloidal particles to increase in their size. Experiments using only permanent magnets, in the previous study, displayed the satisfactory outcome of filtering corrosion products and indicated that the removal efficiency was more than 90 $\%$ for above 5 $\mu$m particles. Experiments using electric magnets also showed the good performance of flocculation without chemical agents and exhibited that most corrosion particles were flocculated into larger aggregates about 5 $\mu$m and over in diameter. It is, thus, expected that the magnetic filter system with the arrangement of permanent and electric magnets will be an effective way for the removal of radioactive corrosion products with considerably high removal efficiency.

  • PDF