• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.029 seconds

Corrosion of Fe-(8.5~36.9) wt% Cr Alloys at 600~800℃ in (N2, H2S, H2O)-Mixed Gases (Fe-(8.5~36.9) wt% Cr합금의 600~800℃, (N2,H2S,수증기)-혼합 가스분위기에서의 부식)

  • Kim, Min Jung;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • Fe-(8.5, 18.5, 28.3, 36.9) wt% Cr alloys were corroded between 600 and $800^{\circ}C$ for up to 70 h in a 1 atm gas mixture that consisted of 0.0242 atm of $H_2S$, 0.031 atm of water vapor, and 0.9448 atm of nitrogen gas. Their corrosion resistance increased with an increment in the Cr content. The Fe-8.5%Cr alloy corroded fast, forming thick, fragile, nonadherent scales that consisted primarily of an outer FeS layer and an inner (Fe, Cr, O, S)-mixed layer. The outer FeS layer grew into the air by the outward diffusion of $Fe^{2+}$ ions, whereas the inner mixed layer grew by the inward diffusion of oxygen and sulfur ions. At the interface of the outer and inner scales, voids developed and cracking occurred. The Fe-(18.5, 28.3, 36.9)% Cr alloys displayed much better corrosion resistance than the Fe-8.5Cr alloy, because thin $Cr_2O_3$ or $Cr_2S_3$ scales formed.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.

Predicting the impact of global warming on carbonation of reinforced concrete structures in Zambia and Japan

  • Wanzi A. Zulu;Miyazato Shinichi
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.245-255
    • /
    • 2024
  • The problem of carbonation-induced corrosion has become a concern in recent times, especially in the 21st century, due to the increase in global temperatures and carbon dioxide (CO2) concentration in the atmosphere possessing a significant threat to the durability of reinforced concrete (RC) structures worldwide, especially in inland tropical regions where carbonation is the most significant concrete degradation mechanism. Therefore, a study was conducted to predict the impact of global warming on the carbonation of RC structures in Lusaka, Zambia, and Tokyo, Japan. The Impact was estimated based on a carbonation meta-model that applies the analytic solution of Fick's 1st law using literature-based concrete mix design data and forecasted local temperature and CO2 concentration data over a 100-year period with relative humidity assumed constant. The results showed that CO2 diffusion increased between 17-31%, effecting a 40-45% rise in carbonation coefficient and a significant reduction in corrosion initiation time of 50-52% in the two cities. Moreover, for the same water-cement ratio, Lusaka showed almost twice higher carbonation coefficient values and one third shorter corrosion initiation time compared to Tokyo, mainly due to its higher temperature and low relative humidity. Additionally, the carbonation propagation depth at the end of 100 years was between 12-22 mm in Tokyo and 18-40 mm in Lusaka. These findings indicate that RC structures in these cities are at risk of rapid deterioration, especially in Lusaka, where they are more vulnerable.

Influence of ZnO Nanoparticle Size on Mitigating SCC in Stainless Steel 304

  • Sehoon Hwang;SeKwon Oh
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.5
    • /
    • pp.398-405
    • /
    • 2024
  • In this study, ZnO nanoparticle treatments were applied to stainless steel 304 to mitigate the generation of stress corrosion cracking (SCC) under pressurized water reactor (PWR)-simulated conditions, focusing on temperature and pressure (300℃, 150 bar), specifically simulating temperature and pressure. ZnO nanoparticles were synthesized via plasma discharge in an aqueous solution, with sizes ranging from 355 ± 142 nm to 25.7 ± 7.2 nm along the long axis, controlled by adjusting the voltage parameters. After treatment with 25 nm ZnO nanoparticle treatment, the surface of stainless steel 304 was analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirming the formation of a compact and dense ZnCr2O4 spinel oxide film with a thickness of approximately 65 nm. Corrosion potential tests conducted using a Potentiostat/Galvanostat revealed that corrosion resistance improved as ZnO nanoparticle size decreased. Additionally, U-bend tests under accelerated corrosion conditions showed significantly reduced SCC in samples treated with 25 nm ZnO nanoparticles. These findings suggest that ZnO nanoparticles synthesized via plasma discharge could be effectively applied for SCC mitigation in the nuclear industry.

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

Studies on the Concrete Reinforcement Corrosion by Electrochemical Impedance Spectroscopy (전기화학적 임피던스법에 의한 철근콘크리트의 부식연구)

  • Kang, Tae-Hyuk;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.907-913
    • /
    • 1998
  • Corrosion behavior of steel reinforcements embedded in concrete containing various chloride ion concentrations was investigated by an electrochemical impedance spectroscopy(EIS). Chloride ions were introduced into the concrete by dissolving the NaCl and $CaCl_2$ in the water with a given weight of cement. Based on the impedance parameters measured by EIS, more complete equivalent circuit, a schematic physical model, and the mechanism of concrete reinforcement corrosion were suggested. By the implement of experimental impedance parameters obtained from the model with corresponding CNLS-fitting data, the corrosion rate of steel reinforcement with chloride ions could be predicted.

  • PDF

Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water (원자력 발전소 배관재를 이용한 고온 수화학 조건에서의 방사화 부식생성물 모사에 관한 연구)

  • Kim Sang Hyun;Kim In Sup;Lee Kun Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • High temperature - high pressure apparatus was developed to simulate nickel fewite corrosion products which were main compositions of the radioactive crud in the nuclear power plant. Corrosion product similar to the crud was obtained by a tube accumulator system. Nickel alloy (Inconel 690) and carbon steel (SA106 Gr. C) were corroded at 270 $\^{circ}C$ in the corrosion product generator. Ni ions and Fe ions dissolved by corrosion reaction were able to be transported to the accumulator because the crud generation mechanism was the solubility change with temperature. To evaluate the properties of simulated corrosion products, scanning electron microscope (SEM) observation and EDAX analysis were performed. SEM observation of corrosion product showed the needlelike or crystal structure of oxide depending on precipitating location. The crystal oxide was the nickel ferrite, which was similar to the crud in nuclear power plants.

  • PDF

The Effect of LiBr Concentration on Corrosion of Absorption Refrigeration Systems Using $LiBr-H_2O$ Working Fluids ($LiBr-H_2O$계 흡수식냉동기의 부식에 미치는 LiBr 농도의 영향)

  • Lim Uh Joh;Jeong Ki Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.33-39
    • /
    • 2001
  • This paper was studied on corrosion behavior of absorption refrigeration systems using $LiBr-H_2O$ working fluids. In the various concentration of lithium bromide solution, polarization test of SS 400, Cu(C1220T-OL) and Al-Ni bronze is carried out. And the corrosion behavior of materials forming absorption refrigeration systems is investigated. The main results are as following: 1) As concentration of lithium bromide solution increases, polarization resistance of materials of each kinds is low. And open circuit potential becomes less noble, the corrosion current density is high drained 2) Open circuit potential of SS 400 is less noble than that of Cu and Al-Ni bronze, corrosion current density of SS5 400 is high drained than that of Cu and Al-Ni bronze. 3) Anodic polarization of Cu and Al-Ni bronze in $62\%$ LiBr solution continues the active state. that of Cu and Al-Ni bronze in the natural sea water maintains the active state and the critical current for passivation appears.

  • PDF

Corrosion Characteristics of Catenary Materials in Electric Railway System (전차선로 가선재료의 부식특성)

  • 김용기;윤상인;장세기;이재봉
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.535-542
    • /
    • 2000
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as Catenary Materials in Electric Railway System. Since these materials may have chance to be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important not only to investigate the corrosion characteristics but also to measure corrosion rates in various corrosive environments. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization. a.c impedance spectroscopy and galvanic corrosion tests were carried out in these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effect on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF