• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.034 seconds

The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.163-169
    • /
    • 2014
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with $16mg/m^2$, $48mg/m^2$ and $96mg/m^2$ didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.

Electrochemical and Cavitation Characteristics of Al Thermal Spray Coating with F-Si Sealing (알루미늄 용사코팅의 불소실리콘 봉공재 적용에 따른 전기화학적 및 캐비테이션 특성 평가)

  • Han, Min-Su;Lee, Seung-Jun;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.317-324
    • /
    • 2010
  • Marine transportation by ships is characterized by remote, large-volume and lower rates than the others carry system. Ships account for over 80% of all international trading, and marine transportation is an internationally competitive, strategic, and great national important industry. The construction of larger and faster ships has brought about many problems such as cavitations and erosion corrosion. Cavitations and erosion corrosion make damages on materials and leads to break down members due to continuous physical contacts with shock waves and fluids from the generation and extinction of air bubbles in sea water vortex. The steel used for ship constructions was spray-coated with Al wire, and additionally sealed with fluorine silicone sealing material. Results of experiment, corrosion resistance of sealed thermal spray coating was improved, however in cavitation resistance, the large effect was not appeared. Accordingly, this study applied for thermal spray coating to provide better electrochemical characteristics and corrosion resistance in marine environment.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

The Replacement Plans for Aged Public Water Supply Pipes in Apartment Buildings : Especially Apartment Buildings in Bucheon (공동주택의 노후 급수관 개선방안에 관한 연구 : 부천시 공동주택을 중심으로)

  • Lee, Yong-Hwa;Heo, Yong-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.228-232
    • /
    • 2015
  • The water supply galvanized steel pipes of apartment buildings in Bucheon city constructed with building permission before 1994 have many problems such as leaks, the water containing rust, and low water pressure due to corrosion. Therefore, this study aims to find a way to renew the water supply pipes under investigation through a survey. As a result, when replacing the galvanized steel pipe with the corrosion-resistant pipe, the water supply system should also be changed from the gravity tank system to the booster pump system and the hygienic water storage tank. It is necessary to redraft the long-term repair plan including the replacement of the water supply system. Also, it is necessary to save the allowance reserve according to the modified long-term repair plan.

An Evaluation of Corrosion Protective Systems for Reinforcing Steel in Concrete (콘크리트 구조물의 철근 방식성능 실험평가)

  • Hur, Jun;Hong, Gi-Suop;Oh, Sung-Mo;Jang, Ji-Won;Choi, Eung-Kyu;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.275-280
    • /
    • 1997
  • An experimental study to evaluate corrosion protection systems was undertaken with 47 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring marcrocell corrosion currents, which are generally accepted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl an exposed to a 10 percent of NaCl show high values of corrosion currents. For the specimens with water repellent membrane currents kept relatively low numerical values, while test specimens with surface corrosion inhibitor hyprotective systems show high values of corrosion currents. No clear indication of the corrosion inhibitor protective systems might be due to the extremely high chloride exposure of the specimens, which has brought the accelerated corrosion. It would be expected that evaluation of the corrosion protective systems need long-term measurement with specimen exposed les chloride but simulating the real condition.

  • PDF

Effect of Mixed Inhibitor on Corrosion Inhibition of Steel Rebar in Chloride Contaminated Concrete Pore Solution (염화물 오염 콘크리트 공극 용액에서 철근의 부식 억제에 대한 혼합 억제제의 효과)

  • Mandal, Soumen;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.32-33
    • /
    • 2021
  • The corrosion of the embedded steel rebars and the consequent deterioration of the reinforced concrete structure has become a challenging concern to the construction industries for the fiscal deficit. However, corrosion inhibitors are potential and being widely used for corrosion mitigation to solve such problems. This study has been focused on the mixed type of corrosion inhibitor where one component of the corrosion inhibitor is organic and another one is inorganic material. 0.1 (M) triethanolamine (TEA) and 0.01 (M) sodium hexametaphosphate (SHMP) have been mixed in distilled water to produce the mixed inhibitor. Studies of the steel rebar corrosion in chloride contaminated (3.5 wt.% NaCl) concrete pore (CCCP) solution has been conducted using different concentrations of corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) method is involved to understand the corrosion behaviour of the steel rebars at different exposure durations.

  • PDF

Noticeable localized corrosion of solid boric acid on 304 stainless steel

  • Xinzhu Li;Wen Sun;Guiling Ning
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3616-3625
    • /
    • 2024
  • With the aim to determine the potential corrosion effects of solid boric acid (BA) on light water reactors or other BA-involved equipment, the corrosion behaviors of solid BA on 304 stainless steel (SS) at different temperatures were investigated. Upon comparing the corrosion behaviors of solid BA at different temperatures, significant localized corrosion was observed on 304 SS surfaces at 150 ℃ following 90-day. This localized corrosion exhibited a characteristic pattern of scattered corrosion craters including B-containing Cr-rich oxides. These oxides were found to originate within micro-cracks, gradually evolving into scar-like protrusions within the craters. The proposed corrosion mechanisms entail the interactions between solid BA and chromium oxides/hydroxides, leading to the formation of B-containing Cr-rich oxides. Our findings offer insights into potential corrosion incidents and protective strategies for industries dealing with solid BA.

Erosion-Corrosion Behavior of Power Plant Pipe Caused by Hot Feed Water (고온 급수에 의한 파워 플랜트 배관 침식-부식 거동)

  • Bang, Sung-Ho;Lee, Jin-Won;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.739-745
    • /
    • 2013
  • In this study, we tried to define the erosion-corrosion behavior together with the resulting effects on a pipe that is a part of a feed water circulation system according to the pipe size and hot feed water environment. An erosioncorrosion analysis was performed through the Hayduk and Minhas model based on the chemical reaction between iron and oxygen, an essential corrosive factor. The erosion-corrosion rate against the pipe diameter and feed water temperature was then evaluated by means of finite element analysis using ABAQUS. As shown in the results, the feed water temperature was the main factor influencing the erosion-corrosion rate; in particular, it was expected that the thickness of 316 stainless steel would decrease by $2.59{\mu}m$ every year in a hot water environment at $290^{\circ}C$.

Experimental investigation on durability performance of rubberized concrete

  • Guneyisi, Erhan;Gesoglu, Mehmet;Mermerdas, Kasim;Ipek, Suleyman
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.193-207
    • /
    • 2014
  • The study presented herein aims to investigate the durability related properties of rubberized concrete. Two types of waste scrap tire rubber were used as fine and coarse aggregate, respectively. The rubber was replaced with aggregate by three crumb rubber and tire chips levels of 5, 15, and 25% for the rubberized concrete productions. In order to improve the transport properties and corrosion resistance of rubberized concretes, SF was replaced with cement at 10% replacement level by weight of total binder content. The transport properties of the rubberized concretes were investigated through water absorption, gas permeability, and water permeability tests. The corrosion behavior of reinforcing bars embedded in plain and silica fume based rubberized concretes was investigated by linear polarization resistance (LPR) test. The results indicated that the utilization of SF in the rubberized concrete production enhanced the corrosion behavior and decreased corrosion current density values. Moreover, the reduction in the water and gas permeability coefficients was observed by the incorporation of SF in plain and especially rubberized concretes.

Perforrmance Tests of Epoxy-coated Reinforcing Bars : Corrosion Protection Properties (에폭시 도막 철근의 내부식 성능에 관한 실험적 연구)

  • 신영수;홍기섭;최완철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.173-179
    • /
    • 1994
  • Epoxy coated bars protecting reinforcing bars from corrosion and enhancing durability of reinforced concrete structures are tested to evaluate corrosion protection properties. Tests are performed based on the relevant sta.ndards of KS and ASTM, such as chenical resistance, salt water spray, salt crock test and chloride ermeability test. with the main varlable of the coating thlckness. Test results show good chemical protection property and chloride permeability. The results of the salt water spray and the salt crock test show that epoxy coating well protects the reinforcing bars from corrosion, cornparing to the biack bars without epoxy coatmg. However, several spots on the coated bars are rusted at the pinholes or un the bars with coating thickness less thar $200{\mu}M$. Special cautions are required i n the process of blast cleanmg when applying the usion-bonded epoxy coating.