• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.024 seconds

The Capacity of Applying Electrical Resistance Probe in Natural Corrosion Tests of Vietnam

  • Pham, Thy San;Le, Thi Hong Lien;Le, Quoc Hung
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.98-101
    • /
    • 2003
  • The Electrical Resistance Probe of carbon steel and weight loss coupons were exposed in atmosphere and in the lake water of Hanoi. The comparison of data received by two methods after one year exposure was presented. The correspondence of the data of these methods on the exposure time in both environments showed a capacity of using Electrical Resistance Probe in Vietnamese natural corrosion testing of Carbon steel.

A Study on the Crevice Corrosion Behavior of Chromium Plating (크롬도금의 틈부식 거동에 관한 연구)

  • 곽남인;임우조
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.4
    • /
    • pp.324-328
    • /
    • 2003
  • This study was made on the crevice corrosion behavior of chromium plating in fresh water. Under the various crevice, the electrochemical polarization test of chromium plating was carried out. Results are discussed In terms of corrosion potential, polarization resistance, corrosion current density and cathodic control of chromium plating.

A Study on the Corrosion Susceptibility and Corrosion Fatigue Characteristics on the Material of Turbine Blade (Turbine Blade재료의 부식민감성과 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Ryu, Seung-U;Kim, Hyo-Jin;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.603-612
    • /
    • 2000
  • Corrosion characteristics on the 12Cr alloy steel of turbine blade was electro-chemically investigated in 3.5wt% NaCI and 12.7wt% Na2S04 solution, respectively. Electro-chemical polarization test, Huey test and Oxalic acid etching test were previously conducted to estimate corrosion susceptibility of the material. And, using the horizontal corrosion fatigue tester, corrosion fatigue characteristics of 12Cr alloy steel in distilled water, 3.5wt% NaCI solution, and 12.7wt%(1M) Na2S04 solution were also fracture-mechanically estimated and compared their results. Parameter considered was room temperature, 60'C and 90'C. Corrosion fatigue crack length was measured by DC potential difference method.Obtained results are as follows,1) 12Cr alloy steel showed high corrosion rate in 3.5wt% NaCI solution and Na2S04 solution at high tempratue.2) Intergranular corrosion sensitivity of 12 Cr alloy was smaller than austenitic stainless steel.3) Corrosion fatigue crack growth rate in 3.5wt% NaCI and 12.7wt%(IM) Na2S04 solution is entirely higher than in the distilled water, and also increased with the temperature increase.

Electrochemical Corrosion Behavior of Duplex Stainless SteelAISI 2205 in Ethylene Glycol-Water Mixture in the Presence of50 W/V % LiBr

  • Goodarzi, A.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.58-67
    • /
    • 2016
  • The corrosion behavior of duplex stainless steel AISI 2205 was investigated in ethylene glycol-water mixture in the presence of 50 W/V % LiBr at different concentrations and different temperatures. Cyclic polarization, impedance measurements and Mott-Schottky analysis were used to study the corrosion behavior the semi conductive properties of the passive films. The results showed that with increasing in the ethylene glycol concentration to 10 V/V%, the corrosion rate of the steel alloy substrate increased. In higher concentrations of ethylene glycol, corrosion current of steel decreased. The results of scanning electron microscopy of electrode surface confirmed the electrochemical tests. Electrochemical experiment showed that duplex steel was stable for pitting corrosion in this environment. The increase in the ethylene glycol concentration led to increasing the susceptibility to pitting corrosion. The corrosion current increased as the temperature rise and also pitting potentials and repassivation potentials shifted towards the less positive values as the temperature increased. According to Mott-Schottky analysis, passive films of stainless steel at the different temperatures showed both n-type and p-type semiconductor behavior in different potential.

Development and demonstration of an erosion-corrosion damage simulation apparatus (배관 침부식 손상 연속모사 장비 개발 및 실증)

  • Nam, Won Chang;Ryu, Kyung Ha;Kim, Jae Hyoung
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

An Electrochemical Study on the Effect of Salt Affecting to Corrosion Behavior of Concrete Reinforced Steel in Natural Sea Water (천연해수에 침지된 콘크리트 내부의 철근부식거동에 미치는 염분의 영향에 관한 전기화학적 연구)

  • 김광근;류보현;점성종;김기준;문경만
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • When the concrete structures were being made with sand containing chloride ion it was knows that corrosion rate of reinforced steel embedded in concrete with chloride ion was higher than that of concrete with on chloride ion. In this study, the operation of Friedel salts affecting the corrosion behavior of reinforced steel embedded in cement mortar was investigated with electrochemical view. Corrosion potential of reinforced steel embedded in cement mortar with sand containing chloride ion was shifted noble direction than that of cement mortar with no chloride ion after immersed 5 month in natural sea water and also corrosion current density decreased with shifting corrosion potential to noble direction. However Friedel salts appeared from surface to 2.5cm of inside direction of mortar specimen, which is located at 11.5$\circ$(2$\theta$) in XRD analysis and the amount of Ca(OH)2 by SEM photograph in cement mortar with chloride ion was larger than that of cement mortar with mo chloride ion. Eventually it is suggested that Friedel salts was resulted from chloride ion and it acted as the corrosion inhibitor.

  • PDF

Electrochemical Corrosion Damage Characteristics of Austenite Stainless Steel and Nickel Alloy with Various Seawater Concentrations (오스테나이트계 스테인리스강과 니켈합금의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.281-288
    • /
    • 2021
  • Due to advancement of the industry, operation of a device in a harsh environment is increasing. Especially, the marine environment contains Cl- ions which causes localized corrosion such as pitting and crevice corrosion of stainless steel and various metals. In this study, electrochemical corrosion behaviors of austenitic stainless steel (STS 316L) and nickel alloy (Inconel 600) with different seawater concentrations (fresh water, seawater, mixed water) were investigated. The STS 316L and Inconel 600 were etched in 10% oxalic acid and composed of an austenitic phase. Results of Tafel analysis in seawater showed that STS 316L and Inconel 600 presented the highest corrosion current densities of 7.75 × 10-4 mA/cm2 and 1.11 × 10-4 mA/cm2 and the most negative pitting potentials of 0.94 V and 1.06 V, respectively. The maximum damage depths and surface damage ratio by pitting corrosion increased with chloride concentration. The STS 316L had higher PREN than Inconel 600. However, the surface damage and weight loss of Inconel 600 were superior to STS 316L. It was difficult to compare the pitting resistance of STS 316L based on Fe and Inconel 600 based on Ni with PREN simply.

Electrochemical Characteristics of Superaustenitic Stainless Steel with Temperature in Sea Water (슈퍼오스테나이트 스테인리스강의 해수환경에서 온도에 따른 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.391-402
    • /
    • 2021
  • In this investigation, the electrochemical characteristics of superaustenitic and general austenitic stainless steels were compared by conducting potentiodynamic polarization experiment with varying temperatures in natural seawater solution. From the result of the potentiodynamic polarization experiment, the corrosion rate of UNS S31603 was found to be 17 times faster than that of UNS N08367 under the most severe corrosion conditions. The relationship between the corrosion rate by maximum damage depth and the corrosion rate by the corrosion current density was expressed as α value for each stainless steel. The α value of UNS S31603 under all temperature conditions was higher than that of UNS N08367 under similar conditions. This means that UNS S31603 is more prone to localized corrosion than UNS N08367. UNS S31603 expressed pitting type damages under all temperature conditions as shown by SEM analysis results. The pitting damage rapidly grew at the relatively poor grain boundaries. Damage on UNS N08367 was not clearly represented at 30 ℃ and 60 ℃, and slight intergranular corrosion damage was observed on the entire surface at 90 ℃.

Corrosion Protective Method Applicable to Air Vent Connected with a Heat Transport Pipe (열수송관에 연결된 에어벤트에 적용 가능한 부식 방지 방안)

  • Min Ji Song;Gahyun Choi;Woo Cheol Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study aimed to elucidate causes of corrosion of heat transport pipes and air vents installed under a manhole of heat transport facilities and suggest effective anticorrosive measures by applying paints or adhesive tapes. It was found that air vent corrosion was attributed to corrosion under insulation caused by the inflow of water and the enrichment of chloride ions. The infiltrated water caused a hydrolysis of polyurethane foam (PUF) insulation by concentrating chloride ions at the interface between a pipe and the PUF. As insulator deteriorated, more chloride ions were eluted as confirmed by ion chromatograph (IC) analysis. As an effective method to prevent air vent corrosion, different types of paints and adhesive tapes with higher corrosion resistance on chloride ions were applied and environmental resistance tests were performed with those samples. Based on environmental test results of samples exposed to 10% HCl solution, it was revealed that a wax tape was the most adequate from a viewpoint of stability at operating condition, environmental resistance, surface treatment, and field applicability.

Failure Analysis of Welded Pipe in Water Supplies for Apartment

  • Lee, Jong Kwon;Hong, Kyung Tae;Hwang, Woon Seok;Koh, Yong Tae;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • Galvanized Steel pipes have been widely used in industries and apartments, Unexpected early leakage has been found in an apartment. Tunneling corrosion or penetration was found in the water supply pipes. The chemical compositions of the pipes and properties of coating layer were evaluated. The pipes met the specification of KS D 3507. The cause of early failure was analyzed through the examination of macrostructures and microstructures, It was found that the pipes were failed by grooving corrosion, which resulted from galvanic corrosion of weld bead and matrix.