• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.028 seconds

Corrosion of Quartz Crystal Marine Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • 최광재;장상목;김영한
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the corrosion process of an aluminum surface of a quartz crystal for marine sensor by sea water. A quartz crystal having 2000 $\AA$ of aluminum layer is installed in a specially designed cell and is in contact with sea water imitated electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrometer(EDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of sensor surface.

  • PDF

Corrosion Loss of the Shell and the Bulkhead Plates of the Oil Tankers According to Their Age (유조선의 선각외판 및 격벽 부식도의 선령별 변화)

  • Park, Jung-Hee;Park, Si-Jung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 1982
  • The corrosion loss of the shell plates and the bulkead plates of the oil tankers, nationalities of which belong to korea are determined and analyzed. The thickness of the plates are determined by use of the ultrasonic thickness meters at the check points set along the fore and aft line and the perpendicular to it. Difference between the original thickness and the determined one are given as the corrosion loss at the present age. 1. On the shell plates (1) The total mean of the corrosion loss shows the greatest value on the load water line in every age classes of the vessels. (2) The total mean of the corrosion loss on the fore and aft line shows little difference, even though it is slightly greater at the fore part, in every age classes of the vessels. (3) The corrosion loss along the perpendicular grows greater in the order of upper bilge line, light water line, freeboard line and load water line at 16 ages of the vessels, and the loss changes in the order of light water line, upper bilge line, freeboard line and load water line at 20 ages of the vessels. (4) The total mean of the corrosion loss along the light water line and upper and lower water line shows the greatest value on the fore part. That along the freeboard line and the load water line shows the greatest value on the midship part and on the after part, respectively. 2. On the bulkhead plates (1) The total mean of the corrosion loss shows the greatest value on the top part at the every age classes of the vessels. (2)The corrosion loss along the perpendicular grows greater in the order of the lower, center and upper part at every age classes of the vessels. (3) The total mean of the corrosion loss at the top part grows greater in the order of the transverse bulkhead of the side oil tank, that of center oil tank, longitudinal bulkhead of center oil tank, and transverse bulkhead of side water tank at the 20 ages of the vessels.

  • PDF

Area Effect on Galvanic Corrosion of Condenser Materials with Titanium Tubes in Nuclear Power Plants (Titanium 전열관을 사용하는 원전 복수기 재료의 Galvanic Corrosion에 미치는 면적의 영향)

  • Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 1993
  • Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, if this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R$_1$(surface area of carbon steel/surface area of Ti) and R$_2$(surface area of carbon steel/surface area of Cu) are very important for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when the ratio of surface area of Fe/ surface area of Al Brass is 1 while it is 570 mpy when this ratio is 10$^{-2}$ . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R$_1$ and R$_2$ on the polarization curve.

  • PDF

Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device (아연 이온화 장치에 의한 상수배관 내 스케일 및 녹 생성 억제효과 실증 연구)

  • Yum, Kyung-Taek;Choi, Jung-Wook;Yang, Sung-Bong;Shim, Hak-Sup;Yu, Mee-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.465-476
    • /
    • 2021
  • Scale and rust generation in water pipes is a common phenomenon when cast iron water pipes have been used for a long time. A physical water treatment device is known among various means for suppressing rust in a water pipe, and a zinc ionization device for putting zinc metal into a pipe and emitting the zinc cation into water is one of such devices. This research measured the amount of zinc ion generated, which is known to exhibit an effect of inhibiting rust and scale generation in a pipe, and examined the scale and rust inhibition effect of the ionization device installed for ground or building water supply. In the case of distilled water, the concentration of zinc ion increased by circulating water in the ionization device several times, and it was verified to be hundreds of ㎍/L, and in the case of discharging ground or tap water, it was verified to be tens of ㎍/L. In addition, a verification pipe was installed to confirm the change inside the pipe before and after installation of the zinc ionization device, and the internal condition of the pipe was observed 3 months to several years after installation. It was confirmed that the corrosion area of the surface of the pipe was no longer increased by installing a corrosion inhibitor, and if the pipe was already filled with corrosion products, the amount of corrosion products gradually decreased every year after installation. The phenomenon of fewer corrosion products could be interpreted as expanding the space in the pipe due to the corrosion product as Fe2O3 adhered to the inner surface of the pipe and turned into a smaller black Fe3O4. In addition, we found that scale such as CaCO3 together in the corrosion by-products gradually decreased with the attachment of the ionization device.

Study on corrosion characteristics of treatment plants in Korea (국내 정수장의 부식성 특성 연구)

  • Min, Byung-dae;Chung, Hyen-mi;Lee, Lee-nae;Choi, Inchol;Ahn, Kyunghee;Park, Ju-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.707-714
    • /
    • 2016
  • In order to prevent secondary pollution of tap water, corrosion characteristics are investigated, and corrosion index are calculated using LI and LR to manage corrosiveness. As targeted water treatment plants from 2014 (July, once) to 2015 (July and October, 2 times), 70 plants are selected by making a division for each area and water system. (treated water samples, n=240, raw water samples, n=72). In result of pH analysis, treated water was lower than raw water to 7.12, and 7.29, respectively. LI were investigated in the order of Seomjin river, Nakdong river, Han river, Geum river, to -2.08, -1.24, -1.11, -1.10 (at raw water), and -2.18, -1.59, -1.51, -1.35 (at treated water), respectively. In case of water quality goal value (LI = -1) in Japan as control of corrosiveness, management object was investigated about 83.3%.

Characteristic of Steel Corrosion in Carbonated Concrete

  • You, JeiJun;Ohno, Yoshiteru
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.130-135
    • /
    • 2005
  • In this study, accelerated corrosion tests were conducted on concrete specimens with and without accelerated carbonation beforehand for the purpose of elucidating the effects of carbonation, cover depth, and water-cement ratio (W/C) on the reinforcement corrosion. During testing, the corrosion current between the anode steel and cathode stainless steel was measured to continuously monitor the progress of corrosion throughout the test period, thereby investigating the mechanism of reinforcement corrosion and the relationship between corrosion and crack width, as well as other parameters.

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique (EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구)

  • Lee, Yeon-Ju;Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

A Study on the Corrosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식방지에 관한 연구)

  • Lim, Uh-Joh;Kim, Seong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.164-175
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of Cl-. Generally, to protect these accidents, anti-corrosion paint and epoxy coating have been used. But they were still remained erosion-corrosion damage like impingement erosion, cavitation erosion and deposit attack. It is necessary to develope the new composite lining material in order to protective those corrosion damages. In this paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS400 were investigated by the electrochemical polarization test and the impingement-cavitation erosion test for corrosion behaviour under the sea water. The main results obtained are as follows ; 1) Epoxy coating appear potentiodynamic polarization behaviour, but polyester glass flake and vinylester glass flake lining do not appear potentiodynamic polarization behaviour. 2) Open circuit potential of polyester glass flake lining is more noble than that of epoxy coating and corrosion current density of polyester glass flake lining is less drained than that of epoxy coating in sea water. 3) Open circuit potential of vinylester glass flake lining is more noble than that of polyester glass flake lining and corrosion current density of vinylester glass flake lining is less drained than that of polyester glass flake lining in the sea water.

  • PDF

Corrosion Behavior of AZ31 Magnesium Alloy during Machining (AZ31 마그네슘 합금의 절삭가공과정에서의 부식거동)

  • Kim, Jae-Hak;Kwon, Sung-Eun;Lee, Seung-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.315-321
    • /
    • 2012
  • In the study, corrosion characteristics of AZ31 magnesium alloy under various environments exposed during machining(immersion in cutting oil, 5 % cutting oil aqueous solution and distilled water & contact with dissimilar metals, SPC4 and A5052-H32) were investigated. A corrosion test was performed AZ31 magnesium alloy was immersed in each electrolyte solution after contacting with each dissimilar metals, and the results were observed by an electron microscope. In immersion tests, corrosion of AZ31 magnesium alloy showed to be in the sequence of distilled water> 5 % cutting oil aqueous solution> cutting oil> air, and in the test of contact with dissimilar metals, corrosion showed to be in the sequence of SPC4> A5052-H32> AZ31. It can be concluded that to prevent corrosion during machining, AZ31 magnesium alloy must prevent contacting water and use magnesium alloy for raw material of Jig & Fixture.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.