• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.035 seconds

Development of GMAW Process with Twin Torch for Wide Overlay using Compound Filler Plate (분말 용가재판을 사용한 광폭 오버레이용 트윈토치 GMAW 공정개발)

  • Hwang, Kyu-Min;Kim, Sung-Deok;Jung, Byung-Ho;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • Generally, wear plate is steel plate having improved surface contact strength and impact strength by surface hardening which is welded using materials with good corrosion resistance, wear resistance and thermal resistance property. CFP GMAW(Compound Filler Plate Gas Metal Arc Welding) is the cladding method using GMAW with the CFP, which is bound with waterglass, on the substrate. It has advantages of reducing compound powder loss, uniform penetration, and preventing hardness decrease. To develope mass production technique of CFP GMAW process for production of high quality wear plate, the method for controling shallow penetration and increasing productivity is required. In this study, twin torch method applied to CFP GMAW process for increasing productivity. And the method was developed by controling penetration control, CFP dry time, gas formation flux and water glass concentration. As a result, applying twin torch method to CFP GMAW process was possible and high quality wide bead could be made without overlap joint.

Investigation on Optimum Protection Potential Decision of Al Alloy(5083F) in Sea Water by Impressed Current Cathodic Protection (해수 환경하에서 알루미늄합금(5083F)의 외부전원법에 의한 최적 방식전위 결정에 관한 연구)

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Jong-Shin
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.6
    • /
    • pp.262-270
    • /
    • 2007
  • Recently, there has been a new appreciation of aluminum alloys as materials that are capable of reducing the environment load. This is because aluminum alloys are lightweight, easy to recycle, permit miniaturization, and have environmental friendly properties. In this study, we investigated the mechanical and electrochemical properties of 5083F aluminum alloys using slow strain rate test(SSRT) and potentiostatic tests under various potential conditions. In the potentiostatic tests, the current density in the potential range from -0.7 to -1.4V after 1,200 s was low. After considering the results of the potentiostatic tests, maximum tensile strength, yield strength, elongation, time-to-fracture, observation of fractured specimen and fractography analysis, the optimum protection potential range was between -1.3 and -0.7V(Ag/AgCl).

Influence on the Chemical Durability of $B_2O_3-SiO_2$ and $Al_2O_3-SiO_2$ Thin Films at the Addition of $P_2O_5$ ($P_2O_5$의 첨가가 $B_2O_3-SiO_2$$Al_2O_3-SiO_2$ 박막의 화학적내구성에 미치는 영향)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.615-622
    • /
    • 1993
  • In order to increase chemical durability of thin films in binary system B2O3-SiO2 and Al2O3-SiO2 on the slide glass by the dip-coating technique from TEOS(Tetraethyl Orthosilicate) and boric acid or aluminum nitrate, phosphoric acid(5~20mol%) was added, respectively. Corrosion of acid and alkali of samples treated with 1N, HCl, NaOH and distilled water at 10$0^{\circ}C$ for 15 minute, were measured IR transmittance and variance of transmittance at visible range. Surface structure of thin film was investigated with SEM and formation of crystal phase according to additiion of phosphoric acid was measrued with XRD. In Al2O3-SiO2 system, change of remarkable characteristic was not obtained at the addition of P2O5 but transmittance of thin film was decreased with addition of P2O5 in B2O3-SiO2 system.

  • PDF

Experimental Study on Watertightness Properties of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 사용한 콘크리트의 수밀특성에 관한 실험적 연구)

  • Joung, Won-Seoup;Park, Dong-Su;Kwon, Ki-Joo;Kim, Joung-Woo;Kim, Do-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.429-432
    • /
    • 2008
  • Large area members such as foundation concrete of underground structures in power plants have an effect on structural stability and durability of the structure due to danger of crack occurrence and shrinkage crack that occur owing to the difference of temperature by heat of hydration between inside and outside of the members at initial age. And a construction for waterproofness is performed additionally to protect marine structures from osmosis of seawater because the structures adjoin below the surface of sea. So, if a rise of the heat of hydration, crack, and corrosion of bars are controled effectively using a composite such as fluosilicate salt in concrete production process of a initial construction, expenses are cut down and construction hours are reduced by securing durability through improvement of watertightness. The property tests of adiabatic temperature by hydration are carried out at initial age about standard concrete and test concrete using a fluosilicate salt composite to evaluate an effect on improvement of watertightness for concrete structures in this study. And the experiments such as a permeability test of hardened concrete, a water absorption test, a compression strength test and a elongation test are carried out and the results from these are described.

  • PDF

An experimental study on carbonation and compressive strength of cementitious materials containing CO2 reactive materials (CO2 반응물질을 혼입한 시멘트계 재료의 탄산화 진행 및 압축강도 발현에 관한 실험적 연구)

  • Seong, Myung-Jin;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.30-31
    • /
    • 2015
  • Usually, carbonation of concrete causes pH reduction and corrosion of steel, it leads to decrease of durability. However, CaCO3, as results of reaction with hydrates products and CO2, can contribute to improvement of compressive strength. Based on this theory, using carbonation depth, the researches about CO2 absorption of plain concrete and concrete containing CO2 reactive materials has been performed. But, the researches has limitation about using one material, therefore, for this study, considering various CO2 reactive materials, experiment has been proceeded. With water to binder ratio 50%, after initial curing for 2days, accelerated carbonation was performed for 28days, and carbonation depth and compressive strength were measured. As results of carbonation depth, specimen containing desulfurized slag, zeolite showed the highest CO2 absorption, in case of compressive strength, specimens with MgO were indicated as highest compressive strength.

  • PDF

Experimental and Analytical Study on Burst Pressure of a Steam Generator Tube with a T-type Combination Crack (T-형 복합 균열이 존재하는 증기발생기 전열관의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Kim, Hong-Deok;Chung, Han-Sub;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2004
  • Steam generator tubes experience widespread degradations such as stress corrosion cracking, wear, tube rupture, denting, fatigue and so on. The resulting damages can cause tube bursting or leak of the primary water which contains radioactivity Therefore the allowable size of the damage is required to be determined on the maintenance purpose. The burst pressure of a tube with a T-type combination crack consisting of longitudinal and circumferential cracks is obtained experimentally and analytically. Fracture parameters such as stress intensity factor and crack opening angle are investigated. Also the burst pressure for a T-type combination crack is compared with that of a single longitudinal crack to develop a length-based criteria.

Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine (목질 열분해유의 디젤 엔진 적용성 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Lim, Gi-Hun;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

Three-dimensional finite element simulation and application of high-strength bolts

  • Long, Liji;Yan, Yongsong;Gao, Xinlin;Kang, Haigui
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.501-512
    • /
    • 2016
  • High-strength structural bolts have been utilized for beam-to-column connections in steel-framed structural buildings. Failure of these components may be caused by the bolt shank fracture or threads stripping-off, documented in the literature. Furthermore, these structural bolts are galvanized for corrosion resistance or quenched-and-tempered in the manufacturing process. This paper adopted the finite element simulation to demonstrate discrete mechanical performance for these bolts under tensile loading conditions, the coated and uncoated numerical model has been built up for two numerical integration methods: explicit and implicit. Experimental testing and numerical methods can fully approach the failure mechanism of these bolts and their ultimate load capacities. Comparison has also been conducted for two numerical integration methods, demonstrating that the explicit integration procedure is also suitable for solving quasi-static problems. Furthermore, by using precise bolt models in T-Stub, more accurately simulate the mechanical behavior of T-Stub, which will lay the foundation of the mechanical properties of steel bolted joints.

EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE

  • Ryu, Woo Seog;Park, Dae Gyu;Song, Ung Sup;Park, Jin Seok;Ahn, Sang Bok
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.219-222
    • /
    • 2013
  • Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7-28) ${\times}10^{19}n/cm^2$ (E>0.1MeV) at $250^{\circ}C$, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at $250^{\circ}C$ did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1%) at fluences of (0.7~28) ${\times}10^{19}n/cm^2$ (E>0.1MeV).