• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.041 seconds

Study on the Damage Behavior of 304 Stainless Steel for Gas Boiler with Specific Resistance (비저항에 따른 가스보일러용 304스테인리스강재의 손상거동에 관한 연구)

  • Yun, Byoung-Du;Lim, Uh-Joh;Jeong, Ki-Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.6-10
    • /
    • 2005
  • This paper was studied on the damage behavior of stainless steel (STS 304) for gas boiler with specific resistance. The electrochemical polarization test of STS304 for gas boiler was carried out. And the anodic polarization and damage aspect, such as pitting corrosion, was considered. With being low specific resistance, the passive current density of STS 304 increases, passive region and pitting potential is low. Also, the patting aspect of STS304 In specific resistance $74{\Omega}{\cdot}m$ water little appears, the pitting number increases and the damage behavior, such as pitting aspect, gradually grow bigger with being low specific resistance.

  • PDF

Theoretical Velocity Analysis of Micro Robot Based on Crawling Locomotive Mechanism for Pipe Inspection Micro Robot (Crawling 방식을 이용한 관 탐사용 소형 로봇의 이동속도 해석)

  • Jang, Ki-Hyun;Park, Hyun-Jun;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.633-641
    • /
    • 2008
  • Recently, the necessity for diagnosis and management of pipes has emerged as the issue due to contamination of water supply generated by corrosion of pipes. Although inspection has been performed with industrial endoscopes, the method has limits for full diagnosis of pipes due to the lack of working range. As a solution for this problem, many locomotive mechanisms for a micro robot with endoscope functions were proposed. In this paper, we analyze the locomotive mechanism of crawling robot proposed as locomotive device for pipe inspection. Based on a mechanical modeling of motor and micro robot inside small pipe, the theoretical formula for velocity is obtained. This derived theoretical formula is demonstrated the feasibility through the comparison with experimental result. Also, we could find the most important element influencing the moving velocity of micro robot when the robot operates in small pipe. Consequently, it is expected that this study can supply useful information to design of crawling robot to move in small pipe.

A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode (촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.467-475
    • /
    • 2018
  • The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.

Development of Ultral Clean Machining Technology with Electrolytic Polishing Process

  • Lee, Eun-Sang;Park, Jeong--Woo;Moon, Young-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.18-25
    • /
    • 2001
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusion and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be removed and the true structure of the surface will be restored. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of metal object. A new electrolyte composed of phosphoric, sulfuric and distilled water has been developed in this study. Two current density, high & low current density regions, have been applied in this study. In this study, In the region of high current density, there is no plateau region but excellent electrolytic polishing effect can be accomplished in short machining time because material removel process and leveling process occur simultaneously. In the low current density region, there can be found plateau region. The material removal process and leveling process occur successively. The aim of this work is to determine electrolytic polishing for stainless steel in terms of high & low current density and workpiece surface roughness.

  • PDF

Study on Optimal Welding Processes of Half Nozzle Repair on Small Bore Piping Welds in Reactor Coolant System (원자로냉각재계통 소구경 관통관 용접부 부분노즐교체 예방정비를 위한 최적 용접공정에 관한 연구)

  • Kim, Young Zoo;Jung, Kwang Woon;Choi, Kwang Min;Choi, Dong Chul;Cho, Sang Beum;Cho, Hong Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • The purpose of this study is to develop a Half Nozzle Repair(HNR) process to prevent the leakage from welds on small bore piping in Reactor Coolant System. The Codes & Standards of tempered bead and design requirements of J-Groove welds are reviewed. Automatic machine GTAW welding and machining equipments are developed to perform HNR process. Single pass welding and overlay welding equipments are conducted in order to obtain the optimal temper bead welding process parameters with Alloy 52M filler wire. Coarse grain heat affected zone(CGHAZ) is formed by rapid cooling rate in heat affected zone after welding. Accordingly, a proper temper bead technique is required to reduce CGHAZ in 1-Layer of welds by 2- and 3-Layers. Mock-up tests show that the developed HNR process is possible to meet ASME Code & Standard requirements without any defect.

Flexural and Interfacial Bond Properties of Hybrid Steel/Glass Fiber Reinforced Polymer Composites Panel Gate with Steel Gate Surface Deformation for Improved Movable Weir (개량형 가동보에 적용하기 위한 하이브리드 강판/GFRP 패널 게이트의 강판게이트 표면형상에 따른 휨 및 계면 부착 특성 평가)

  • Kim, Ki Won;Kwon, Hyung Joong;Kim, Phil Sik;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.57-66
    • /
    • 2015
  • The purpose of this study was to improved the durability of a improved movable weir by replacing the improved movable weir's metal gate with a hybrid steel/glass fiber reinforced polymer composites panel gate. Because the metal gate of a improved movable weir is always in contact with water, its service life is shortened by corrosion. This study made four type of hybrid steel/glass fiber reinforced polymer composites panel gate with different steel gate surface deformation (control, sand blast, scratch and hole), flexural. Fracture properties tests were performed depending on the steel gate surface deformation. According to the test results, the flexural behavior, flexural strength and fracture properties of hybrid steel/glass fiber reinforced polymer composites panel gate was affected by the steel panel gate surface deformation. Also, the sand blast type hybrid steel/glass fiber reinforced polymer composites panel gate shows vastly superior flexural and fracture performance compared to other types.

The Study on the AC Interference of High Power Cable on Underground Gas Pipeline (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구)

  • Bae, J.H.;Kim, D.K.;Ha, T.H.;Lee, H.G.;Kwak, B.M.;Lim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.470-473
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern (safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline. especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of indiction voltage.

  • PDF

Cycle Analysis of Air-Cooled Double-Effect Absorption Cooling System Using H2O/LiBr+HO(CH2)3OH (H2O/LiBr+HO(CH2)3OH계 공냉형 이중효용 흡수식 냉방시스템의 사이클 해석)

  • Kwon, Oh-Kyung;Moon, Choon-Geun;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.272-280
    • /
    • 1999
  • A cycle analysis was achieved to predict the characteristics by comprehensive modeling and simulation of an air-cooled, double-effect absorption system using a new $H_2O/LiBr+HO(CH_2)_3OH$ solution. The simulation results showed that the new working fluid may provide the crystallization limit 8% higher than the conventional $H_2O/LiBr$ solution. With a crystallization margin of 3wt%(weight%), the optimal solution distribution ratio was found in the range of 36 to 40%. Variation of cooling air Inlet temperature has a sensitive effect on the cooling COP and corrosion problem. The simulation of heat exchangers with UA value revealed that the absorber and the evaporator are relatively important for an air-cooled system compared with the condenser and the low temperature generator. The effect of cooling air flow rate, circulation weak solution flow rate and chilled water inlet temperature were also examined. The new working fluid may provide the COP approximately 5% higher than the conventional $H_2O/LiBr$ solution.

Surface Coating and Corrosion Characteristics of Bipolar Plates of PEMFC Application (PEMFC용 분리판 표면코팅 및 부식성 평가)

  • Kang, Kyung-Min;Kim, Dong-Mook;Choi, Jeong-Sik;Cha, In-Soo;Yun, Young-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1 um) and gold film (1-2 um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed micro structure of grains of about 100 nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.