• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.034 seconds

Fabrication and Characterization of High-Performance Thin-Film Encapsulation for Organic Electronics (유기반도체용 고성능 박막 봉지재의 제조 및 평가)

  • Kim, Nam-Su;Graham, Samuel
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1049-1054
    • /
    • 2012
  • Continued advancements in organic materials have led to the development of organic devices that are thin, flexible, and lightweight and that can potentially be used as low-cost energy-conversion devices. While these devices have many advantages, the environmentally induced degradation of the active materials and the low-work-function electrodes remain a valid concern. Hence, many vacuum deposition processes have been applied to develop low-permeation barrier coatings. In this work, we present the results pertaining to the developed thin-film encapsulation. Multilayer encapsulation involves the use of $SiO_x$ or $SiN_x$ with parylene. The effective water vapor transmission rates were investigated using a Ca-corrosion test. The integration of the developed barrier layers was demonstrated by encapsulating pentacene/$C_{60}$ solar cells, and the results are presented.

Analysis of Overlay Weld Effect on Preventing PWSCC in Dissimilar Metal Weld (이종금속 용접부의 일차수응력부식균열 방지를 위한 예방정비 용접 효과 분석)

  • Lee, Seung-Gun;Oh, Chang-Kyun;Park, Heung-Bae;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.97-101
    • /
    • 2010
  • PWSCC(Primary Stress Corrosion Cracking) in Alloy 82/182 butt welds is the problem affecting safety and integrity of nuclear power plant. PWSCC can be occurred in the area that is at high magnitude of tensile residual stress, such as Alloy 82/182 dissimilar metal welds in PZR(pressurizer) nozzles. There have been a number of incidents recently at the dissimilar metal welds in overseas nuclear power plants. Overlay weld is the one of the effective methods to decrease tensile residual stress of inside surface, which will result in preventing PWSCC. In this paper, overlay weld conditions on the purpose of preventing PWSCC was explained and the benefit of the overlay weld was confirmed performing finite element analysis.

Investigation on Effect of Distance Between Two Collinear Circumferential Surface Cracks on Primary Water Stress Corrosion Crack Growth in Alloy 600TT Steam Generator Tubes (Alloy 600TT 증기발생기 전열관내 일렬 원주방향 표면 일차수응력 부식균열 성장에 미치는 균열 간격의 영향 고찰)

  • Heo, Eun-Ju;Kim, Jong-Sung;Jeon, Jun-Young;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.269-273
    • /
    • 2015
  • The study investigated the effect of the distance between two collinear circumferential surface cracks on the primary stress corrosion crack (PWSCC) growth in alloy 600TT steam generator tubes using a finite element damage analysis based on the PWSCC initiation model and macroscopic phenomenological damage mechanics approach. The damage analysis method was verified by comparing the results to the previous study results. The verified method was applied to collinear circumferential surface PWSCCs. As a result, it was found that the collinear cracks showed earlier coalescence and penetration times than the a single crack, and the times increased with the distance. In addition, it is expected that penetration may occur before coalescence of two cracks if they are more than a specific distance apart.

Properties of Water-based Acrylic Adhesives Depending on Surfactants (계면활성제의 종류에 따른 수성 아크릴 접착제의 물성변화)

  • Park, Jong-Kwon;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.454-459
    • /
    • 2017
  • In this study, aqueous acrylic emulsion adhesives were prepared using various surfactants and their properties were also investigated. Solids content, conversion, particle size distribution and initial adhesion properties of the prepared adhesives were compared with each other. The solid content of the adhesives was evaluated 60% and the conversion rate of the emulsion polymerization was 97% at 2 wt% concentration of synthesized surfactants. The particle size distribution analysis revealed that the size distribution of adhesive particles was 290~470 nm when the synthesized cationic surfactant was added. The initial adhesion and adhesion time were also improved. The maximum adhesive strength was found to be 2.55 kgf when using a single surfactant (POE 23), and superior to that of using other surfactants. It was confirmed that the corrosion inhibition of the adhesive prepared by adding the cationic gemini surfactant was maintained for 48 hours.

Characteristics of the AlON-Al2O3 Ceramic Coatings on the Al2021 Alloy by Electrolytic Plasma Processing

  • Wang, Kai;Byeon, Sang-Sik;Kim, Geun-Woo;Park, Keun-Young;Ahmed, Faheem;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.155-158
    • /
    • 2012
  • In this work, AlON-$Al_2O_3$ coatings were prepared on Al2021 alloy by the electrolytic plasma processing (EPP) method. The experimental electrolytes include: 2 g/l NaOH as the electrolytic conductive agent, 10 g/l $Na_2AlO_2$ as the alumina formative agent, and 0.5 g/l $NaNO_2$, $NaNO_3$, and $NH_4NO_3$ as the nitride inducing agents. The effects of different nitrogen inducing agents were studied by a combined compositional and structural analyses of the ceramic coatings carried out by Xray diffractometry (XRD) and scanning electron microscopy (SEM) for the specimens EPP-treated at room temperature for 15 min under a hybrid voltage of 260 DC along with an AC 50 Hz power supply (200 V). Microhardness tests and wear tests were carried out to correlate the evolution of the microstructure and the resulting mechanical properties. Potentiodynamic polarizations and immersion corrosion tests were carried out in 3.5wt% NaCl water solutions under static conditions in order to evaluate the corrosion behavior of the coated samples. The results demonstrate that $NaNO_2$ is proven to be a good nitrogen inducing agent to produce high quality AlON-$Al_2O_3$ ceramic coatings.

The Study on the Electrochemical Polarization Characteristics of Hydrogen Embrittlement for Ferrite Stainless Steel with Welding Conditions (용접조건에 따른 페라이트 스테인리스강에 대한 수소취성의 전기화학적 분극특성에 관한 연구)

  • Choi, Byung-Il;Lim, Uh-Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.30-35
    • /
    • 2005
  • In order to examine the electrochemical polarization characteristics of hydrogen embrittlement far STS444 with welding conditions, this paper carried out the accelerated hydrogen osmosis test and the electrochemical polarization test. That is, in $0.5M\; H_2SO_4+0.001M\;As_2O_3$ solution, the hydrogen embrittlement behavior of STS444 added to load of $1,400kg/cm^2$ together with hydrogen osmosis by current of $30mA/cm^2$ far 60 min. was considered. In researching the electrochemical polarization characteristics of hydrogen embrittlement for STS444 with welding conditions, the previous study clarified that tensile strength or elongation became low influenced by absorption of oil or water before welding. In this paper, we proposed the advanced mechanism of hydrogen embrittlement that integrated electrochemical corrosion with the existing mechanism of hydrogen embrirtlement.

  • PDF

Deterioration Characteristic of Shotcrete Immersed in Chemical Solution (화학적 침식에 의한 숏크리트의 열화특성 분석 - 단기거동)

  • Lee, Gyu-Phil;Kim, Dong-Gyou;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.143-152
    • /
    • 2005
  • Shotcrete for support of tunnel structures may contact with groundwater. The hazardous components in groundwater may cause corrosion of shotcrete. Also, the hazardous components may deteriorate the engineering properties of shotcrete, such as compressive strength, bond strength, flexural strength and so forth. The more the effect of the hazardous components on the shotcrete may increase, the more the stability of tunnel structure may decrease. The specimens were artificially immersed in various chemical solutions including hazardous components after the specimens were made at the tunnel construction site. It was performed to analyze the effect of the hazardous components in ground water on the engineering properties of shotcrete. The uniaxial compressive strength test, XRD, SEM were conducted to evaluate the durability and corrosion of shotcrete.

  • PDF

Investigation and Evaluation on Performance of Durability for Freeway Concrete Viaducts in Seoul Metropolitan Area (서울시내 위치한 콘크리트 고가차도의 내구성능 조사 및 평가)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.143-152
    • /
    • 2002
  • The objectives of this paper were to obtain the fundamental data to analyze the causes of deterioration of 39 freeway concrete viaducts in Seoul metropolitan area. To investigate the degree of concrete deterioration, carbonation depth, soluble chloride concentration in hardened concrete and half-cell potentials of reinforcement were measured. The number of structures which carbonation depth penetrates to reinforcement was 25% of total. The model of carbonation .ate was induced to 3.92 $\sqrt{t}$, which was 5% faster than 3.727 $\sqrt{t}$ assumed 60% water-cement ratio, R=1 in that of kishitani. After measuring chloride concentration in concrete, it was concluded that about 24% of all readings on samples from concrete exceed the critical content to minimize the risk of chloride-induced corrosion. About 31% of the freeway viaducts structures had a value lower than -350mV(vs. CSE), so it could conclude that the excessive chloride concentration was the major cause of reinforcement corrosion. Among the structures which measured half-cell potentials less than -350mV, about 50% exceeds the maximum acceptable limit of chloride concentration.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF