• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.031 seconds

Environmental Fatigue Behaviors of Austenitic Stainless Steels in the Primary Water Environment of Nuclear Power Plants (원전일차측 환경에서 오스테나이트계 스테인리스강의 환경피로특성)

  • Lee, Hyeon Bae;Kim, Ho-Sub;Kim, Taesoon;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.19-30
    • /
    • 2017
  • Austenitic Stainless Steels (ASSs) are widely used as structural materials in the pressurized water reactors (PWRs) because of their superior mechanical properties and corrosion resistance. However, it is well known that ASSs are susceptible to the environmental assisted cracking (EAC) such as environmental assisted fatigue (EAF) during the long term operation. There have been extensive tests and researches to understand the extent and the mechanisms of environmental effects. In this paper, the world-wide EAF test results of ASSs are introduced including those of Korean test programs. The suggested EAF mechanisms of ASSs are also discussed. Finally, the areas of further research to resolve the issue of EAF are suggested.

Superhydrophobic and Hydrophobic Anodic Aluminum Anodic Oxide Layer: A Review (초발수성 및 발수성 알루미늄 양극산화피막의 최신 연구 동향)

  • Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Hydrophobic and Superhydrophobic surfaces are promising technology for the surface finishing of metallic materials due to its water-repellency. Realization of highly water-repellent surface on aluminum and its alloys provides various functionalities for real application fields. In order to realize the hydrophobic/superhydrophobic surfaces on aluminum and its alloys, various technologies have been demonstrated. Especially, traditional anodic oxidation for aluminum has been widely employed for the morphological texturing of surfaces, which is essential to enhance the hydrophobic efficiency. De-wetting superhydrophobic surface on aluminum provides various exceptional properties, such as anti-corrosion, anti-/de-icing, anti-biofouling, drag reduction, self-cleaning and liquid separation. Nevertheless, the durability and stability of superhydrophobic surfaces still remain challenges for their actual applications in engineering systems and industry. In this review, the theoretical/experimental studies and current technical limitations on the hydrophobic and superhydrophobic surface using anodic oxidation of aluminum have been summarized.

A New Test Method to Determine the Initiation Time of Stress Corrosion Cracking

  • Bahn, Chi-Bum;Lee, Tae-Hyun;Lee, Seung-Gi;Choi, Hoi-Su;Kim, Ji-Hyun;Hwang, Il-Soon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.347-348
    • /
    • 2005
  • A proving ring test method equipped with DCPD was developed and applied to detect the crack initiation time in PWR primary water conditions. The specimens were exposed to the PWR primary water environment during one month. The DCPD signals were very clear but the crack initiation was not detected manly because of the low stress condition. To increase the stress condition, Ni plating will be conducted after the straining the specimens.

  • PDF

A Study on Behavior of Novel Non-Metallic Anchoring System for FRP Tendons (FRP 긴장재의 비금속 정착 시스템의 거동에 관한 연구)

  • 서관세;조병완;이계삼;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.983-988
    • /
    • 2000
  • Anchoring systems with structural stability and endurance have been one of the most important elements for PSC structures, especially for the structures using non-corrosive FRP tendons. FRP tendons are in increasing use for underground and coastal structures constantly contacted with fresh water or sea water because of their superiority to metallic ones in corrosion-resistance. In this study new non-metallic anchoring system for FRP tendons has been tested and investigated. The newly developed anchoring system utilizes FRP pipes and HEM (Highly Expansive Mortar). The major factors considered in this experiment were expansive pressure of HEM during its hydration and the strength of GFRP(Glass Fiber Reinforced Plastic) Pipe. Anchoring forces of the new anchoring system were investigated from the pull-out testes. The authors analyzed pull-out procedures of the FRP tendons in the various pipe filled with HEM and suggested an improved idea to develop novel non-metallic anchoring system for FRP tendons

원전 2차계통 배관재의 침식-부식 손상

  • 한정호;허도행;이은희;정한섭;김우철
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.312-323
    • /
    • 1994
  • 1986년 12월 미국의 Surry Unit 2 발전소에서 발생한 급수배관의 대형 파손사고가 침식-부식(erosion-corrosion) 현상에 의해 일어난 것으로 밝혀진 이후, 조사 결과 2차계통에 광범위하게 사용되는 탄소강, 저합금강 재질에서 이와 유사한 손상사례가 많이 나타나는 것으로 밝혀졌다. 이러한 침식-부식 손상은 물-증기로 이루어진 계의 단상(water) 또는 2상(water-wet steam) 조건에서 발생된다. 국내의 원자력 발전소 2차계통에서도 이러한 침식-부식 손상이 나타나고 있으며, 현재 손상원인 해석과 이에 대한 대책 수립이 시급히 요청되고 있다. 본 기고문은 국내 원전의 침식-부식 손상조사와 이의 대책수립을 위한 연구에 활용될 수 있는 침식-부식 손상의 개념, 현상학적 양상, 주요인자의 영향 및 해외 원전의 손상경험 사례 등을 종합하여 정리한 것이다.

  • PDF

Freeze-Thaw Resistance and Void Characteristic of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 및 공극특성)

  • Kim, Seong-Soo;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.589-592
    • /
    • 2006
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 300 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The MIP analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Sihwa tidal power plant WEB based corrosion protection realtime control system development (시화조력 WEB 기반의 전기방식 실시간 감시제어시스템 개발)

  • Kim, Jong-Deug;Park, Sung-Oh;Kang, Il-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1615-1617
    • /
    • 2007
  • 시화 방조제상에 공사중인 국내최초, 세계최대용량의 조력발전소에 25,400kW의 벌브형 수차발전기 10대를 설치함에 따라서 해수에 의한 부식으로부터 설비를 보호하기 위한 전기방식을 적용하였다. 전기방식 설계는 설비의 재질에 따라 요구되는 단위 면적당 전류밀도가 상이하고 발전기의 운전상태에 따라 소요되는 각기 다른 수량의 양극과 수차발전기를 제어하는 주 제어시스템과의 통신이 필수인 지능화된 정류기가 요구되어진다. WEB 기반의 감시제어시스템 구성시 외부 또는 장소에 제한없이 전기방식 설비의 정상 가동여부, Alarm, Fault 상태 등을 실시간 접속하여 확인이 가능하고 담당 직원 또는 지정된 사람의 휴대폰에 문자메세지를 통한 상태 알림 기능을 자동으로 제공할 수 있도록 구성하였다.

  • PDF

A Study on the Standard of Ship Hull Construction for Aluminium Alloys Fishing Boats (알루미늄 합금제 어선건조를 위한 선체구조기준 설정에 관한 연구)

  • Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.1
    • /
    • pp.22-82
    • /
    • 2000
  • The ship hull construction materials of fishing boat has changed in order that wooden, steel, and fiber glass reinforced plastic(FRP). The fishing boat made from FRP has increased every year because that materials has proved excellent of the characteries for fishing boats construction members. Recently, FRP tend towards evasion for the pollution of air enviroment. Therefore. the materials of fishing boat construction must be exchanged by another one. Aluminium alloys must be recommended for fishing boats construction mateials because that is light weight and corrosion resisting in the sea water. Regulation of the standard of ship hull construction for aluminium alloys fishing boats did not enact laws in the interior now. Therefore, this regulation was studied by the following items. that is Rudder, Bottom construction, Side hull plate construction, Deck plate construction, piller. Water tight bulkhead, Deep tank, Fish tank, Stern construction, Superstructure, Deck house construction, Hatch, Engine room opening, Hatch opening, Bulwark, Welding and Rivet etc. A study on the regulation will be contributed to enact laws for fishing boat construction of aluminium alloys.

  • PDF

An Analysis of External Waterproofing Materials and Construction Technology Status on Single Side Wall in Underground Structures (지하구조물 합벽구간 적용 외방수 재료 및 시공기술 현황 분석)

  • Kim, Meong-Ji;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.222-223
    • /
    • 2019
  • Waterproofing techniques used in underground structures do not reflect material and construction environments, but rely only on material properties, which inevitably lead to their limits in durable life. In particular, the government intends to investigate the current underground water treatment method and analyze the problems in order to prevent serious corrosion and aging of structures caused by underground water leaks and poor construction.

  • PDF

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.