• Title/Summary/Keyword: water cooling tube

Search Result 196, Processing Time 0.024 seconds

A Numerical Study on the Performance Characteristics of a Power Plant Air-Cooled Condenser (ACC) Affected by Changes in Operating Conditions (발전소용 공랭식 응축기(ACC)의 작동조건 변화에 따른 성능특성에 대한 수치적 연구)

  • Park, Kyung-Min;Ju, Kihong;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.243-250
    • /
    • 2017
  • A numerical study was conducted to calculate the cooling capacity variation of a power plant ACC (air-cooled condenser) caused by changes in operating conditions. A numerical model was developed using the ${\varepsilon}-NTU$ and finite volume method, containing 100 elements for a single low fin tube. The model was validated through a comparison of cooling capacity between the simulated values and manufacturer's data. Even though simple assumptions and previously presented heat transfer correlations were applied to the model, the prediction error was 1.9%. The simulated variables of the operating conditions were air velocity, air temperature, and mass flux. The analysis on the variation of thermal resistance along the tube showed that the water side thermal resistance was higher than the air side thermal resistance at the downstream end of the tube, indicating that the ACC capacity could be increased by applying technology to enhance in-tube flow condensation heat transfer.

Performance and Heat transfer Characteristics of Louver Fin-tube Heat Exchanger for Simultaneous Cooling/Heating Heat Pump (동시 냉난방 히트펌프용 루버핀-관 열교환기 성능 및 전열특성 실험연구)

  • Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1337-1342
    • /
    • 2007
  • An experimental study has been performed to investigate the performance and heat transfer characteristics of the heat exchanger for simultaneous cooling/heating heat pump. The heat transfer performance was measured using an air-enthalpy calorimeter and a constant temperature water bath, to obtain the performance evaluation and analysis of a fined tube heat exchanger. Six finned tube heat exchangers with louver fin were tested under a heating condition. Air-side heat transfer and friction were presented in terms of j-factor and f-factor. The heat transfer coefficient increased with decreasing the fin pitch, j-factor and f-factor on the fin pitch and the number of tube rows decreased with increasing Reair.

  • PDF

Analysis of Thermal Performance of a Solar Heating & Cooling System (태양열 냉.난방시스템의 열성능 분석)

  • Kwak, Hee-Youl;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes (수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF

Heat Transfer Performance of Various Tubes for an Air-cooled Absorber with Surfactant

  • Yoon, Jung-In;Kim, Eun-Pil;Moon, Choon-Geun;Kwon, Oh-Kyong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • This research is concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes are a bare tube, a groove tube, a corrugated tube and a spring-inserted tube. The additive concentration is about 0.08 mass%. The heat transfer coefficient is measured as a function of the film Reynolds number in the range of 20~200. Experiments are carried out at higher cooling water temperature of $35^{\circ}C$to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results with and without surfactant are compared. The enhancement of heat transfer by Marangoni convection effect which is generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an spring-inserted has the enhancement effect.

  • PDF

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions (FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성)

  • Jeong, Chul-Ki;Kim, Yong-Chan;Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

A Study on Development of a Plugging Margin Evaluation Method Taking Into Account the Fouling of Shell-and-Tube Heat Exchangers

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1934-1941
    • /
    • 2006
  • As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.

A Study on the Development of Plugging Margin Evaluation Method Reflected the Fouling of a Shell-and-Tube Heat Exchanger (다관원통형 열교환기의 파울링 현상을 고려한 관막음 여유 평가법 개발 연구)

  • Hwang, Kyeong-Mo;Jin,Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1384-1389
    • /
    • 2004
  • As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation mettled reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the future fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant.

Numerical Investigation on Natural Circulation in a Simplified Passive Containment Cooling System (단순화된 피동 원자로건물 냉각계통 내 자연순환에 관한 수치적 연구)

  • Suh, Jungsoo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.92-98
    • /
    • 2018
  • The flow of cooling water in a passive containment cooling system (PCCS), used to remove heat released in design basis accidents from a concrete containment of light water nuclear power plant, was conducted in order to investigate the thermo-fluid equilibrium among many parallel tubes of PCCS. Numerical simulations of the subcooled boiling flow within a coolant loop of a PCCS, which will be installed in innovative pressurized-water reactor (PWR), were conducted using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. As the first step, the simplified geometry of PCCS with 36 tubes was modeled in order to reduce computational resource. Even and uneven thermal loading conditions were applied at the outer walls of parallel tubes for the simulation of the coolant flow in the PCCS at the initial phase of accident. It was observed that the natural circulation maintained in single-phase for all even and uneven thermal loading cases. For uneven thermal loading cases, coolant velocity in each tube were increased according to the applied heat flux. However, the flows were mixed well in the header and natural circulation of the whole cooling loop was not affected by uneven thermal loading significantly.