• Title/Summary/Keyword: water cooling tube

Search Result 196, Processing Time 0.023 seconds

Design and performance analysis of water-to-air heat pump system using double-tube heat exchanger (이중관 열교환기를 사용한 물 대 공기 열펌프 시스템의 설계와 성능해석)

  • Han, D.Y.;Park, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.462-471
    • /
    • 1997
  • The water-to-air heat pump system requires relatively lower energy consumption and less installation space. The heat exchangers used for this system are the finned-tube type for the indoor unit and the double-tube type for the outdoor unit. Mathematical models for this system are developed and programmed in computer. Experimental data from various conditions are obtained and compared with calculated values from the computer simulation program. Differences of cooling capacity and COP are 1.25% and 0.47%, and those of heating capacity and COP are 0.51% and 0.13%, respectively. Simulation results are in good agreement with test results. Therefore, the developed program is effectively used for the design and the performance prediction of water-to-air heat pump system.

  • PDF

A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil (절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.68-78
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil (절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구)

  • Jo, Dong Hyeon;Lee, Jong Seon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.65-65
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32℃ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

Estimation of Flow-induced Vibration characteristics on Plugged Steam Generator (관막음된 증기발생기 전열관의 유체유발진동 특성 평가)

  • Cho, Bong-Ho;Ryu, Ki-Wahn;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.921-926
    • /
    • 2002
  • In this study, we investigate the plugging effect on the CE type steam generator tube. The natural frequency and mode shape will be changed due to decrease of the effective mass distribution along the tube. We compared the variation of stability ratio for plugged tube with that for unplugged one. The natural frequency increased because of removing the cooling water inside the steam generator tube, but the stability ratio decreased inversely because of changing the vibrational model shape. We also investigated the turbulent excitation effect.

  • PDF

A Study on the Condensation Performance for the Horizontal Heat Transfer Tubes with Various Fin Attached (형상이 다른 수평 원형 전열관의 응축 성능에 관한 연구)

  • Han, Kyu-Il;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.47-61
    • /
    • 1992
  • An experimental study was carried out to investigate the condensation performance for the horizontal cylindrical heat transfer tube with various fin attached using R-11 vapor. The heat transfer tube used in this study was supplied by SUNG HYUNG METAL CO., LTD. Four different types of heat transfer tubes (plain tube, SH-CYR tube, thermocor tube and thermoexcel tube) were used. Each tube was surrounded by circular acrylate tube, and R-11 gas heated by boiler flows into the acrylate tube. Cooling water counter-flows in heat transfer tubes. Heat transfer coefficient of the plain tube from measured data was compared with those of three other tubes. The results are summarized as follows: 1. As the cooling water temperature decreased, the liquid film of R-11 turned to droplet drop on the top surface of the horizontal tube. 2. Heat transfer coefficient calculated theoretically was higher than that obtained from the experimental data. 3. As far as the condensation concerns the thermocor tube is the highest, the SH-CYR tube is the second, and the thermoexcel tube is the third excluding the plain tube.

  • PDF

Dynamic Model of a Vertical Tube Absorber for Ammonia/water Absorption Refrigerators (암모니아/물 흡수식 냉동기의 수직원관형 흡수기의 동적 모델)

  • 문현석;정은수;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.844-853
    • /
    • 2002
  • A dynamic model which simulates the coupled heat and mass transfer within a vertical tube absorber was developed. The liquid film is a binary mixture of two components, and both of these components are present in the vapor phase. The pressure, concentration, temperature and mass flow rate of the vapor are obtained by assuming that the pressure is uniform within an absorber. The model was applied to an absorber for an ammonia/water absorption refrigerator. The transient behaviors of the pressure, the outlet temperature and the concentration of the solution and the cooling water outlet temperature on a step change at the absorber inlet of the cooling water temperature, the vapor mass flow rate and the concentration of the solution were shown.

A Study on the Reliability of Cooling Water Systems Using R436B (대체냉매 R436B를 적용한 정수기 냉각수 시스템 신뢰성 평가에 관한 연구)

  • Nam, Hyun-Kyu;Bai, Sangeun;Bai, Cheol-Ho;Ko, Jung-Su;Jin, Byung-Joo;Oh, Ju-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.438-442
    • /
    • 2013
  • The alternative refrigerant R436B is applied, to assess the application feasibility for a commercial cooling water system. The characteristic stability was verified by Sealed glass tube test and Autoclave test. R436B is chemically stable with the compressor material. The Oil miscibility test shows the usual compressor oil mixed well with R436B. Through the life acceleration test, the cooling performance is maintained. Though slight changes in oil and capillary tube diameter were found, they were within the permitted range. R436B should be applied to commercial cooling water systems as a simple replacement for the usual refrigerant.

Evaporating heat transfer characteristics of Aluminum-brass tube for seawater cooling system using R-134a (해수냉각시스템용 Aluminium Brass Tube의 R-134a 증발열전달 특성)

  • Kang, In-Ho;Seol, Sung-Hoon;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.197-201
    • /
    • 2017
  • Most fishing vessels use an ice cooling system to manage and store captured fish. However, it is difficult to maintain an adequate temperature and salt concentration as well as operating time limitations in ice cooling systems. The purpose of this study is to investigate the heat transfer characteristics of flooded-type evaporators for a seawater cooling system to maintain proper seawater temperature in a fish tank. Experiments were conducted to investigate the heat transfer characteristics by changing the seawater temperature, flow rate, and saturation temperature of the refrigerant. It was confirmed that the heat transfer coefficient of an aluminum-brass tube was approximately 10% higher than that of a copper-nickel tube at the same heat flux. Furthermore, it was confirmed that applying the aluminum-brass tube to the heat transfer tube of a seawater heat exchanger was effective in terms of heat transfer. A comparison of the overall heat transfer coefficient of a single-tube heat exchanger and the flooded-type multi-tube heat exchanger for an 18-kW cooling system showed that the heat transfer coefficient of the single-tube heat exchanger was 25% higher under the same conditions. These results are considered to be important data for designing a flooded-type multi-tube heat exchanger.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

An Experimental Study on the Heat Exchanger for the Engine Waste Heat Recovery Using Serrated Fins and Bayonet Tube (톱니형휜이 부착된 2중 열교환관을 이용한 엔진 배열회수기에 관한 실험적 연구)

  • Yang Tae-Jin;Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.685-691
    • /
    • 2005
  • In this study, high performance waste heat recovery heat exchanger was developed using the bayonet tube with spiral serrated fins. Especially, heat exchanger of the bayonet tube type was operated well because of double water passes mechanism and characteristics. A cooling water Passes down inner tubes to thimble-form tubes, then flows back up as it boils. The heat exchanger of bayonet tube type was composed of steel tube with 7channels$(I.D_1\;14mm.\;I.D_2\;31.6mm)$ and spiral serrated fins. The performance tests were conducted under the following conditions A cooling water flow rate was 273kg/h and engine l·pm was varied from 750rpm to 3500 rpm. From the experimental result. waste heat recovery was 9.21kW when engine rpm was 3500. and pressure drop was $15\~260mmHg/m^3$ The effectiveness of heat exchanger was about /$0.7\~0.9$. The performance of heat exchanger was evaluated by using the $\varepsilon-NTU$ method. In the study the NTU of the heat exchanger was $1.57\~2.33$.