• 제목/요약/키워드: water control

Search Result 12,102, Processing Time 0.037 seconds

The Effect of Corrosion Inhibitor on Corrosion Control of Copper Pipe and Green Water Problem

  • Lee, Ji-Eun;Lee, Hyun-Dong;Kim, Gi-Eun
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Concern about green water problem has surfaced as a serious issue in Korea. In order to solve this problem, it is necessary to research inhibition of green water and corrosion control of copper pipe in water service. This paper discovered that moderate corrosion inhibitors can solve the green water problem and copper corrosion in water service by adding the optimal concentration of corrosion inhibitors based on regulation. Firstly, in the case of phosphate based corrosion inhibitors, as dosage of the corrosion inhibitor increases from 1 mg/L to 5 mg/L, the relative effect of corrosion inhibitor declines rapidly. Secondly, except for 1 mg/L dosage of silicate based inhibitor, relative effects of the inhibitor displays a positive number depending on inhibitor concentration. The most significant result is that the amount of copper release shows a downward trend, whereas the phosphate based inhibitor accelerates copper ion release as the inhibitor dosage increases. Thirdly, as the dosage of mixed inhibitors increases to 10 mg/L, the copper release change shows a similar trend of phosphate based inhibitor. Lastly, according to the Langelier saturation index (LI), silicate based inhibitors have the most non corrosive value. Larson ratio (LR) indicates that phosphate based inhibitors are the least corrosive. Korea water index (KWI) represents that silicate based inhibitors are most effective in controlling copper pipe corrosion.

Recent Development of Drinking Water Quality Standard and its Application (음용수질 기준과 관리방안)

  • 권숙표
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 1992
  • Recently water demand is increasing as the industry prospers. The increase of water demand is followed by the increase of wastewater discharge which pollutes rivers and ground water extensively. These rivers, reservoirs and ground water are sources for drinking water and their contamination affects the quality of water supply and other potable water. In Korea there are 776 water treatment plants which supply drinking water from main rivers or reservoirs. Rivers are the biggest water source for drinking water is being contaminated, the innovation of treatment process is needed. The construction and operation of water supply facilities is under the control of the Ministry of Construction and the water supply offices of cities and provinces. However, drinking water quality is under the control of the bureau of sanitation in the Ministry of Health and Social Affairs. There are 33 items in drinking water quality standards of Korea. Trihalomethanes, Selenium, Diazinone and other three of pesticides have been included lately, The Ministry of Health and Social Affairs is planning to enhance. the level of $VOC_S$(Vola-tile Organic Compounds) standard. Drinking water quality standard is the goal to protect the quality of supply water and ground water. In order to protect the source water from domestic or industrial water, technological improvement and adequate investment should be urgently made. The ultimate goal of drinking water quality is safety and health of consumers. The more stringent the standard are, the better the water quality will be. As the drinking water quality standards become more stringent this year, various and positive solutions by the authorities concerned must be prepared.

  • PDF

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System (중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구)

  • Jae-Yeob Song;Byung-Cheon Ahn
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

Community-acquired Legionnaires' Disease in a Newly Constructed Apartment Building

  • Ryu, Sukhyun;Yang, Kyungho;Chun, Byung Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.50 no.4
    • /
    • pp.274-277
    • /
    • 2017
  • Objectives: Legionnaires' disease (LD) is a severe type of pneumonia caused by inhalation of aerosols contaminated with Legionella. On September 22, 2016, a single case of LD was reported from a newly built apartment building in Gyeonggi province. This article describes an epidemiologic investigation of LD and identification of the possible source of infection. Methods: To identify the source of LD, we interviewed the patient's husband using a questionnaire based on the Legionella management guidelines from the Korea Centers for Disease Control and Prevention. Water samples from the site were collected and analyzed. An epidemiological investigation of the residents and visitors in the apartment building was conducted for 14 days before the index patient's symptoms first appeared to 14 days after the implementation of environmental control measures. Results: Legionella pneumophila serogroup 1 was isolated from the heated-water samples from the patient's residence and the basement of the apartment complex. Thirty-two suspected cases were reported from the apartment building during the surveillance period, yet all were confirmed negative based on urinary antigen tests. Conclusions: The likely source of infection was the building's potable water, particularly heated water. Further study of effective monitoring systems in heated potable water should be considered.

Inhibition of Microcystis aeruginosa by the Extracellular Substances from an Aeromonas sp.

  • Liu, Yu-Mei;Chen, Ming-Jun;Wang, Meng-Hui;Jia, Rui-Bao;Li, Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1304-1307
    • /
    • 2013
  • Growth of Microcystis aeruginosa could be inhibited significantly within 24 h by the extracellular substances prepared from Aeromonas sp. strain FM. During the treatment, the concentration of extracellular soluble carbohydrates increased significantly in algal culture. Morphological and ultrastructural changes in M. aeruginosa cells, including breakage of the cell surface, secretion of mucilage, and intracellular disorganization of thylakoids, were observed. HPLC-MS analysis showed that the extracellular substances of Aeromonas sp. strain FM were a mixture of free amino acids, tripeptides, and clavulanate. Among these, the algaelysis effects of lysine and clavulanate were confirmed.

Effect of Processing Method on Change of Water Soluble Dietary Fiber of Fagopyrum tataricum

  • Kim, Dong-Eun;Lee, Beom-Goo;Park, Cheol-Ho;Kang, Wie-Soo
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.70-76
    • /
    • 2005
  • Seed, stem and sprout of F. tataricum were separately milled using the ultra fine mill under the same condition to investigate the effect of roasting or extruding on the particle size, microstructure and water solubility of dietary fiber. The mean particle size of MR (roasting) is increased in stem and sprout, and that of ME (extruding) is increased in seed, compared to that of control. The microscopic views of seed show that control has the spherical shape but ME the larger and irregular shape, and those of stem and sprout show that control has the needle like shape but ME more rounded shape. Water solubility index of ME is much higher than that of control or MR in seed, stem and sprout. It shows that seed, stem and sprout are damaged more in extruding than in roasting, and the starch and cell wall structure must be destroyed to change the water insoluble dietary fiber into the water soluble dietary fiber.

  • PDF