• Title/Summary/Keyword: water contact angle

Search Result 697, Processing Time 0.024 seconds

Characteristics for Nanofluid Droplet Evaporation on Heated Surface at Boiling Temperature of Base Liquid (비등점의 가열 표면에서 나노유체 액적의 증발 특성)

  • Kim, Dae Yun;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • This study aims to experimentally investigate the evaporation characteristics of nanofluid droplet on heated surface at boiling temperature of DI-water. In particular, textured surface was used to examine the effect of wettability on evaporation. At the initial stage of evaporation process, dynamic contact angle (DCA) of nanofluid droplet with 0.01 vol.% concentration on textured surface rapidly increased over its equilibrium contact angle by generated large bubble inside the droplet due to lower wettability. However, contact angle of nanofluid droplet with higher concentration on textured surface decreased with surface tension. In addition, total evaporation time of droplet on textured surface was considerably delayed due to reduction of contact area between droplet and solid surface. Thus, evaporation characteristics were highly affected by the nanofluid concentration and surface wettability.

A Study on the Surface Degradation Properties of Glass Fiber Reinforced Plastics by Environmental Factors (환경 인자에 따른 FRP의 표면화특성에 관한 연구)

  • Lim, K.B.;Jung, G.H.;Lee, B.S.;Whang, M.W.;Park, J.K.;Park, J.K.;Chung, E.N.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1627-1629
    • /
    • 1999
  • In order to analysis the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to high temperature and water. Then the degradation process was evaluated by comparing contact angle, surface potential decay, and surface resistivity. For the change of wettability, the contact angle of thermal-treated specimen with the high temperature of $200^{\circ}C$ increased. But that of water-treated specimen decreased. The characteristic of surface potential decay shows the tendency of the remarkable decrease on water-treated specimens, but no difference on thermal-treated specimen compared with untreated one. Also, for the surface resistivity, it shows the same trend compared with the change of contact angle.

  • PDF

Tuning Hydrophobicity of TiO2 Layers with Silanization and Self-assembled Nanopatterning

  • Nghia, Van Trong;Lee, Young Keun;Lee, Jaesang;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.291-291
    • /
    • 2013
  • The wettability of TiO2 layers is controlled by forming highly ordered arrays of nanocones using nanopatterning, based on self-assembly and dry etching. Nanopatterning of TiO2 layers is achieved via formation of self-assembled monolayers of SiO2 spheres fabricated using the Langmuir-Blodgett technique, followed by dry etching. Compared to a thin film TiO2 layer, the nanopatterned TiO2 samples show a smaller static water contact angle, where the water contact angle decreases as the etching time increases, which is attributed to the Wenzel equation. When TiO2 layers are coated by 1H,1H,2H,2H-perfluorooctyltrichlorosilane, we observed the opposite behavior, exhibiting superhydrophobicity (up to contact angle of $155^{\circ}$) on the nanopatterned TiO2 layers. Self-assembled nanopatterning of the TiO2 layer may provide an advanced method for producing multifunctional transparent layers with self-cleaning properties.

  • PDF

Surface Modification of Polypropylene Fiber by Plasma Discharge (방전처리에 의한 Polypropylene섬유의 표면개질)

  • 허만우;이창재;강인규;한명호;김삼수;임학상
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.27-37
    • /
    • 1999
  • Polypropylene(PP) films were treated with plasma glow discharge to produce peroxy radicals on the surfaces. The peroxy radicals formed on the PP film surfaces were subsequently used for the graft polymerization of acrylic acid and acrylamide in an aqueous solution by heating, respectively. Introduction of acrylic acid and acrylamide on the PP film could be confirmed by the observation of carbonyl and primary amine absorptions based on carboxylic acid and amide, respectively. And introduction of functional group could be confirmed by weight analysis and ESCA. The water contact angle(90$^{\circ}$) of PP film was constant, irrespective of elapsed time, while plasma-treated and functional monomer-grafted PP films were slowly increased with elapsed time, showing the rearrangement of surface polar groups in air condition. The water contact angle$(90^\circ)$ of PP film was decreased by the plasma treatment$(56^\circ)$ and further decreased by the grafting of acrylic acid$(34^\circ)$ and acrylamide$(37^\circ)$, indicating increased hydrophilicity of the modified surfaces. The water contact angle of plasma-treated PP film increased a little as time elapsing. The half-life periods of surface voltage on acrylic acid-(31sec) and acrylamide-grafted PP(42sec) were significantly decreased when compared to those on PP(950sec) and plasma-treated PP film(241sec). In the experiments using acid, basic and disperse dyes, absorbance and $\Delta{E}$ values of functional monomer-grafted PP films were significantly increased than that of oxygen plasma-treated one.

  • PDF

Computer Simulation of the Behavior of Water Seals (워터실 거동의 전산시뮬레이션)

  • Han, Seung-U;Kim, Wan-Du;Lee, Hak-Ju
    • 연구논문집
    • /
    • s.26
    • /
    • pp.25-32
    • /
    • 1996
  • Water seals are used in a washing machine to seal rotating shafts and to prevent the penetration of dust, dirt or water from the outside. The design parameters of water seals, that were the location of the garter spring, the angle of the seal lip, and the interference, were investigated by the computer simulations using the hyperelastic non-linear large deformation finite element analysis code. The maximum contact stress and the distribution of stress on the seal lip were obtained for various type of water seals. The best type among the several investigated seals was selected considering the contact force and the sealing performance.

  • PDF

A novel method for predicting the swelling potential of clay-bearing rocks

  • Moosavi, Mahdi;Ghadernejad, Saleh
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.615-626
    • /
    • 2021
  • The main objective of this study is to present a fast and reliable approach to predict the swelling potential of clay-bearing rocks. Investigations showed that there is a good correlation between the swelling potential of a rock and its desire to absorb water due to its clay content which could be measured using the "Contact Angle" test as one of the most common ways to determine the wettability. In this test, the angle between a water drop and the flat rock surface on which it rests is measured. The present method is very fast and returns repeatable results and requires minimal sample preparation. Only having a saw-cut surface of a sample with any shape is all one needs to perform this test. The logic behind this approach is that the swelling potential of a rock is a function of its mineral content and molecular structure, which are not only distributed in the bulk of the sample but also reflected on its surface. Therefore, to evaluate swelling behavior, it is not necessary to wait for a sample to get wet all the way to its "internal structure" (which, due to the low permeability of clay-bearing rocks, is very slow and time-consuming). Instead, one can have a good sense of swelling potential by studying its surface. Parametric studies on the effect of moisture content, porosity, and surface roughness on the contact angle measurements showed that using a saw-cut oven-dried sample is a convenient way to evaluate the swelling potential by this method.

Water Repellent Characteristics According to the Surface Properties of Cement Mortar Mixed with Water-soluble Water Wepellent (표면 성상에 따른 수용성 발수제 혼입 시멘트 모르타르의 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Hong, Seong-Uk;Yang, Seung-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.42-49
    • /
    • 2020
  • This paper is a basic study to improve durability by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement mortar to which a silane/siloxane-based mixed water repellent was added was prepared, and its initial hydration performance, flow performance, and compressive strength were measured. In addition, after the surface was abraded, the water contact angle and water absorption were measured. The flow of cement mortar to which the water repellent was added was found to decrease up to 1.5% in the addition amount of the water repellent agent, and increased at 3.0% in the addition amount. It was found that the setting time of the cement paste was delayed in both the initial setting and the termination when the water repellent was added. It was found that the compressive strength decreased from 3.0% of the maximum added amount of the water repellent to a maximum of 30%. The contact angle was found to increase when the water repellent was added to the cement mortar, and the contact angle after surface polishing was found to be larger than before surface polishing. The addition of the water repellent showed hydrophobicity not only on the surface but also on the surface and cross section damaged by polishing. The water absorption rate was found to decrease when the water repellent was added to the cement mortar, and the water absorption rate after surface polishing was found to be greater than before surface polishing.

Characteristics of Calcined Clay by Carburization Treatment (소성 점토의 침탄 처리에 따른 물성 변화에 관한 연구)

  • Kim, Sang-Myung;Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Traditionally and generally used calcined clay was carburized, and its characteristics were studied. Carburization treatment was performed by the thermally decomposed carbon and the deposit carbon which occur in a so called 'Boudouard reaction $(2CO{\rightarrow}CO_2+C)'$ at fuel combustion process in a closed-type furnace. The color of the carburized calcine clay changed from yellow to black, and the carbon component revealed as crystalline graphite by the X-ray diffraction test. The weight of the carburized calcine clay decreased to about 4 wt.% by the 1st heating to $1400^{\circ}C$ in air but it does not decreased by the 2nd heating of the same conditions. By the carburization treatment, the water absorption changed from 13 wt.% to 6 wt.%, and the contact angle for water drop changed, too, from 0 to $87^{\circ}$ which was tested by the photograph of one minute after a water drop contact. It means the carburized calcine clay does not absorb water drop so it has a hydrophobic characteristic.

Factors related to Performance of Reverse Osmosis Membrane in Seawater Desalination Process (해수담수화 공정에서 역삼투막의 거동에 영향을 주는 요인)

  • Park, Jun-Young;Hong, Sung-Ho;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Chang-Ha;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.171-176
    • /
    • 2011
  • Organic matters that comprise a tiny part of seawater generally occur over 50% of membrane fouling in Reverse Osmosis Process. This study evaluates Foundation efficiency of reverse osmosis membranes under brackish and seawater conditions and resistance of organic fouling. Moreover, analyzing the membrane surface through roughness, contact angle and zeta potential results in roughness and contact angle are proportional to flux decline rate (FDR), yet FDR has high value when zeta potential is low level. Furthermore, with various membrane fouling of different raw water conditions, the flux tends to improve when pH value is high and raw water which is complex with organic and cation pollutes membrane faster than organic separated raw water condition.

Mechanical and Water Repellent Properties of Cycloaliphatic Epoxy/Microsilica/Nanosilica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.203-206
    • /
    • 2017
  • The effect of the content of microsilica and nanosilica continuously modified with hydroxy silane and epoxy-modified silicone in cycloaliphatic epoxy/microsilica/nanosilica composites (EMNCs) on the mechanical and water repellent properties was evaluated. Surface-modified micro- and nanosilica was well-mixed with a cycloaliphatic epoxy resin in the presence of polyester-modified polydimethylsiloxane (PEM-PDMS) as a dispersing agent using an ultrasonicator. Tensile and flexural tests were carried out using a universal testing machine (UTM). The water repellent property was evaluated by contact angle measurements of water on the composite surface. Tensile strength of the composite could be enhanced by 32.2% up to 91.4 MPa, and the flexural strength was raised to 122.0 MPa, which is 38.8% higher than that of neat epoxy. The contact angle of water on the composite was as high as $104.1^{\circ}$.