• Title/Summary/Keyword: water circulation

Search Result 1,197, Processing Time 0.028 seconds

A Numerical Study on the Two-Phase Natural Circulation Flow in Reactor Cavity under External Vessel Cooling (원자로 외벽냉각시 원자로공동에서의 자연순환 이상유동에 대한 수치적 연구)

  • Kim, Hong-Min;Seo, Jun-Woo;Kim, Kwang-Yong;Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.781-785
    • /
    • 2003
  • This work presents a numerical analysis of two-phase natural circulation flow in reactor cavity under external vessel cooling. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with zero equation turbulence model are solved to predict the shear key effect on the circulation rate of cooling water and the distribution of void fraction according to the different mass flow of inlet air. Results show that shear key has a positive effect on the circulation rate of cooling water and induce a local increase of void fraction below the shear key, but not remarkably.

  • PDF

Water Mass Distribution and Seasonal Circulation Northwest of Cheju Island in 1994

  • PANG Ig-Chan;RHO Hong-Kil;LEE Jae-Hak;LIE Heung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.862-875
    • /
    • 1996
  • The CTD data observed in the sea northwest of Cheju Island have been analyzed to figure out the seasonal circulation around Cheju Island. Warm and saline waters flow into the Yellow Sea through the middle region of the Yellow Sea in winter and along the west coast of Korean Peninsula in summer. On the other hand, cold and less saline waters flow out of the Yellow Sea through the middle region in summer and along the west coast of Korean Peninsula in winter. These flows make the seasonal circulation around Cheju Island. As dynamics, the monsoon wind and the variation of Kuroshio transport have been suggested. Comparing the observational result, the circulation driven by the variation of Kuroshio transport is strengthened by monsoon winds in the numerical model.

  • PDF

Sensitivity Analysis of High and Low Flow Metrics to Climate Variations

  • Kim, Jong-Suk;Jang, Ho-won;Hong, Hyun-Pyo;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.355-355
    • /
    • 2018
  • Natural hydrology systems, including high flow and low flow events, are important for aquatic ecosystem health and are essential for controlling the structure and function of ecological processes in river ecosystems. Ecosystem responses to flow changes have been studied in a variety of ways, but little attention has been given to how episodic typhoons and atmospheric circulation patterns can change these hydrologic regime-ecological response relationships. In this diagnostic study, we use an empirical approach to investigate the salient features of interactions between atmospheric circulation, climate, and runoff in the five major Korean river basins.

  • PDF

The Inverse Circulation System for Using Treated Waste Water as Instream Flow (하수처리수의 하천유지용수 활용을 위한 역순환시스템의 비교)

  • Kim, Gee-Hyoung;Choi, Gye-Woon;Ahn, Tae-Jin;Kim, Jin-Hong;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.863-878
    • /
    • 2003
  • In this paper, it was studied on a device for maintaining the instream flow by using treated waste water from sewage treatment plant, and discussed on using the inverse circulation system in stream for directly utilizing treated waste water as instream flow. This system is to secure insufficient discharge at upstream, as treated water is pumped from treatment plant which is located at down stream. Therefore, it will be improved water quality with simple water treatment plant, as it is composed of optimal system by consist various types of scheme for transporting. Also, influx method of transferred treated water to a stream will be improved water quality by aeration and be shown environmental friendly spaces. It was considered water quality and present using condition to use for maintenance water in stream by treated water. The guide line for application of inverse circulation system in domestic streams is suggested.

Development of a Garlic Peeling System Using High-Pressure Water Jets (III) - Introduction of a microbial control system - (습식 마늘박피 시스템 개발 (III) - 미생물 제어 시스템의 도입 -)

  • Kim J.;Bae Y. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.17-24
    • /
    • 2005
  • An efficient microbial control system was introduced into a garlic peeling system using pressurized water in order to improve the quality and the shelf-life of peeled garlic. High microbial density of the spoiled peeled garlic and the water used for peeling and washing indicated that an efficient microbial control system is necessary far the peeling system. Though Pseudomonas spp. and Penicillium spp. were closely related to the spoilage of peeled garlic, the spoilage of peeled garlic was thought to be caused mainly by nonspecific increase in microbial density. The shelf-life of the garlic peeled by pressurized water was longer than that of the garlic peeled by pressurized air, and the degree of damage had great effect on the shelf-life of peeled garlic. Ozonated water was effective in decreasing the microbial contamination and in increasing the shelf-life of peeled garlic. Based on the findings of the study, following improvements were made to the garlic peeling system using pressurized water; 1) the water circulation system was modified in order to completely separate the water for washing from the water for garlic peeling, 2) filtration and cooling equipments were introduced into the circulation system of the water for peeling, and 3) an ozone generator which could continuously supply ozonated water (dissolved ozone concentration of 0.4 ppm) was attached to the circulation system of the water for washing.

Experimental validation of simulating natural circulation of liquid metal using water

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1963-1973
    • /
    • 2020
  • Liquid metal-cooled reactors use various passive safety systems driven by natural circulation. Investigating these safety systems experimentally is more advantageous by using a simulant. Although numerous experimental approaches have been applied to natural circulation-driven passive safety systems using simulants, there has been no clear validation of the similarity law. To validate the similarity law experimentally, SINCRO-V experiment was conducted using Wood's metal and water for simulant of the Wood's metal. A pair of SINCRO-V facilities with length-scale ratio of 14.1:1 for identical Bo' was investigated, which was the main similarity parameter in temperature field simulation. In the experimental range of 0.2-1.0% of decay heat, the temperature distribution characteristics of the small water facility were very similar to that of the large Wood's metal facility. The temperature of the Wood's metal predicted by the water experiment showed good agreement with the actual Wood's metal temperature. Despite some error factors like discordance of Gr' and property change along the temperature, the water experiment predicted the Wood's metal temperature with an error of 27%. The validity of the similarity law was confirmed by the SINCRO-V experiments.

A Study on the Buoy type Oil Guiding System for the Active Circulation type Oil Recovery Vessel (자연순환식 유회수선박에서의 부유식 기름유도장치에 관한 연구)

  • 이귀주;김경화
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.185-189
    • /
    • 2001
  • A study on the new active circulation type oil-water separation system including buoyancy type guidance system was carried out in this paper. Oil-water separation system is composed of several oil separation steps. Buoy type oil guiding system was developed based on the difference of buoyance of water and oil. The design speed of this vessel is 25 knots.

  • PDF

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

A multilayer Model for Dynamics of Upper and Intermediate Layer Circulation of the East Sea (동해의 상, 중층 순환 역학에 대한 다층모델)

  • 승영호;김국진
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 1995
  • A simple layer model based on isophcnal coordinate is applied to the East Sea to examine the dynamics of circulation. The results confirm the existing knowledge about role of inflow-outflow and wind in driving the circulation. It is found, however, that the buoyancy flux generates quite different circulation pattern; it enhances the inflow-outflow driven circulation and has a convective nature. The circulation considering all these effects resembles the schematic one presently known. In the circulation, the intermediate layer is outcropped in the north off the northern boundary, ventilated here and flows cyclonically in the northern part of basin. This water, however, does not flow southward directly because of the strong eastward (separating from the coast) current in the layer above. This water also loses its potential vorticity while traveling around the periphery of the outcropping region and is thus characterized by minimum potential vorticity in the interior of the basin.

  • PDF