• Title/Summary/Keyword: water absorbing curing

Search Result 4, Processing Time 0.017 seconds

An Experimental Study on the Compressive Strength of Ultra High Strength Concrete with Vacuum Water Absorbing Curing (진공포수양생을 적용한 초고강도 페이스트의 압축강도 발현에 관한 실험적 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.27-28
    • /
    • 2019
  • In this study, the characteristics of compressive strength of ultra high strength concrete supplied with moisture from outside by vacuum water absorbing curing method were investigated. Specimens were prepared by replacing the binder(Silifa fume and GGBS) by 25 wt% with respect to the weight of cement at W/B 0.16. Each specimen was subjected to water Vacuum absorbing curing time 0 min, 30 min, 60 min, 90 min and 120 minutes immediately after the demolding. Curing was performed at $20^{\circ}C$ Air-dry curing, $90^{\circ}C$ steam curing, $90^{\circ}C$ steam curing and $180^{\circ}C$ autoclave curing. Experimental results showed that water absorbing degree increased with increasing water absorbing curing time, and BS25 sample had higher water absorbing degree than SF25 sample at same time. Compressive strength tended to increase up to about 40% in water absorbing degree, but compressive strength decreased again in water absorbing more than 40%.

  • PDF

Effect of Water absorbing Curing Time on Compressive Strength of Ultra High Strength Cement Paste (포수양생 시간이 초고강도 시멘트 페이스트의 압축강도에 미치는 영향)

  • Jang, Jong-Min;Jang, Hyun-O;Choi, Hyun-Kuk;An, Dong-Hee;Kim, In-Soo;Lee, Han-Seun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.107-108
    • /
    • 2017
  • The purpose of this study is to derive the optimum water absorbing curing time. It was found that the cement paste compressive strength was increased with the water absorbing ratio up to 40%, but the compressive strength was slightly lower when the catch level was over 50%. It is considered that the superfluous water did not react and remained in the inside of the specimen, causing microcracks in the inside due to the high temperature curing, resulting in a decrease in strength. Therefore, it is considered that the optimum catcher curing time for improving the strength through catcher curing is when the catcher reaches 40%.

  • PDF

Evaluation of Fundamental Properties and Chloride Penetration Resistance of Concrete using Superabsorbent Polymers (고 흡수성 폴리머를 혼입한 콘크리트의 기초 물성 및 염화물 침투 저항성 평가)

  • Lee, Chan-Kyu;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.50-59
    • /
    • 2020
  • Superabsorbent Polymer (SAP) expands inside concrete by absorbing water and contracts as it discharges water. Through this process, concrete can achieve the internal curing effect, but the space occupied by the expanded SAP remains as a void. In this study, the effects of SAP internal curing and voids were evaluated by evaluating the fundamental properties and chloride penetration resistance of SAP mixed concrete. Also, to evaluate the internal curing effect by SAP, the tests were carried out under water and sealed curing conditions, respectively. From the result, the compressive strength of water curing did not differ significantly according to the mixing ratio of SAP. In the case of sealed curing, however, the compressive strength tended to increase as the mixing ratio of SAP increased. The internal curing effect of sealed curing was considered to have influenced the increase in compressive strength. In the case of the chloride diffusion coefficient, the diffusion coefficient tended to decrease as the mixing ratio of SAP increased. In particular, as the sealed curing is applied, the chloride penetration resistance is further improved due to internal curing effect. If the curing conditions are different, it is considered inappropriate to estimate the chloride penetration resistance by the surface electrical resistivity.

Effective Absorption Capacity of Highly Absorptive Materials using Isothermal Calorimetry, Considering the Effect of Specific Surface Area (등온열량계를 사용한 고흡수성 재료의 유효흡수율 측정: 비표면적의 영향)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • The use of highly absorptive materials in cement-based materials is increasing for internal curing purpose. However, calculation of correct absorption capacity of such materials is not easy, which leads to change in the effective water-to-cement ratio of cement paste by either absorbing or releasing water. In this study, effective absorption capacity of a highly absorptive material was found using isothermal calorimetry. Moreover, the effect of specific surface area was investigated. It was found that the method was capable of finding effective water absorption capacity of activated carbon fiber. For the activated carbon fiber used in this research, the effect of specific surface area was negligible because the high BET surface area was due to micropores less than 1nm, which does not affect the rate of hydration curve. Thus, the effective absorption capacity of such materials can be found successfully using this method.